-
Notifications
You must be signed in to change notification settings - Fork 307
/
Copy pathsfm_inc.cpp
372 lines (348 loc) · 18.3 KB
/
sfm_inc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#include "sfm.hpp"
#include <unordered_set>
cv::Mat getCameraMat(const SFM::Vec9d& camera)
{
const double &f = camera[6], &cx = camera[7], &cy = camera[8];
cv::Mat K = (cv::Mat_<double>(3, 3) << f, 0, cx, 0, f, cy, 0, 0, 1);
return K;
}
cv::Mat getProjectionMat(const SFM::Vec9d& camera)
{
cv::Mat K = getCameraMat(camera);
cv::Mat rvec = (cv::Mat_<double>(3, 1) << camera[0], camera[1], camera[2]), R, Rt;
cv::Mat t = (cv::Mat_<double>(3, 1) << camera[3], camera[4], camera[5]);
cv::Rodrigues(rvec, R);
cv::hconcat(R, t, Rt);
return K * Rt;
}
void updateCameraPose(SFM::Vec9d& camera, const cv::Mat& R, const cv::Mat& t)
{
cv::Mat rvec = R.clone();
if (rvec.cols == 3 && rvec.rows == 3) cv::Rodrigues(rvec, rvec);
camera[0] = rvec.at<double>(0);
camera[1] = rvec.at<double>(1);
camera[2] = rvec.at<double>(2);
camera[3] = t.at<double>(0);
camera[4] = t.at<double>(1);
camera[5] = t.at<double>(2);
}
bool isBadPoint(const cv::Point3d& X, const SFM::Vec9d& camera1, const SFM::Vec9d& camera2, double Z_limit, double max_cos_parallax)
{
if (X.z < -Z_limit || X.z > Z_limit) return true; // BAD! If the point is too far from the origin.
cv::Vec3d rvec1(camera1[0], camera1[1], camera1[2]), rvec2(camera2[0], camera2[1], camera2[2]);
cv::Matx33d R1, R2;
cv::Rodrigues(rvec1, R1);
cv::Rodrigues(rvec2, R2);
cv::Point3d t1(camera1[3], camera1[4], camera1[5]), t2(camera2[3], camera2[4], camera2[5]);
cv::Point3d p1 = R1 * X + t1; // A 3D point w.r.t. the 1st camera coordinate
cv::Point3d p2 = R2 * X + t2; // A 3D point w.r.t. the 2nd camera coordinate
if (p1.z <= 0 || p2.z <= 0) return true; // BAD! If the point is beyond of one of 1st and 2nd cameras.
cv::Point3d v2 = R1 * R2.t() * p2; // A 3D vector 'p2' w.r.t. the 1st camera coordinate
double cos_parallax = p1.dot(v2) / cv::norm(p1) / cv::norm(v2);
if (cos_parallax > max_cos_parallax) return true; // BAD! If the point has small parallax angle.
return false;
}
int main()
{
const char* input = "../data/relief/%02d.jpg";
double img_resize = 0.25, f_init = 500, cx_init = -1, cy_init = -1, Z_limit = 100, max_cos_parallax = cos(10 * CV_PI / 180), ba_loss_width = 9; // Negative 'loss_width' makes BA not to use a loss function.
int min_inlier_num = 200, ba_num_iter = 200; // Negative 'ba_num_iter' uses the default value for BA minimization
bool show_match = false;
// Load images and extract features
cv::VideoCapture video;
if (!video.open(input)) return -1;
cv::Ptr<cv::FeatureDetector> fdetector = cv::BRISK::create();
std::vector<std::vector<cv::KeyPoint>> img_keypoint;
std::vector<cv::Mat> img_set, img_descriptor;
while (true)
{
cv::Mat image;
video >> image;
if (image.empty()) break;
if (img_resize != 1) cv::resize(image, image, cv::Size(), img_resize, img_resize);
std::vector<cv::KeyPoint> keypoint;
cv::Mat descriptor;
fdetector->detectAndCompute(image, cv::Mat(), keypoint, descriptor);
img_set.push_back(image);
img_keypoint.push_back(keypoint);
img_descriptor.push_back(descriptor.clone());
}
if (img_set.size() < 2) return -1;
if (cx_init < 0) cx_init = img_set.front().cols / 2;
if (cy_init < 0) cy_init = img_set.front().rows / 2;
// Match features and find good matches
cv::Ptr<cv::DescriptorMatcher> fmatcher = cv::DescriptorMatcher::create("BruteForce-Hamming");
std::vector<std::pair<uint, uint>> match_pair; // Good matches (image pairs)
std::vector<std::vector<cv::DMatch>> match_inlier; // Good matches (inlier feature matches)
for (size_t i = 0; i < img_set.size(); i++)
{
for (size_t j = i + 1; j < img_set.size(); j++)
{
// Match features of two image pair (i, j) and find their inliers
std::vector<cv::DMatch> match, inlier;
fmatcher->match(img_descriptor[i], img_descriptor[j], match);
std::vector<cv::Point2d> src, dst;
for (auto itr = match.begin(); itr != match.end(); itr++)
{
src.push_back(img_keypoint[i][itr->queryIdx].pt);
dst.push_back(img_keypoint[j][itr->trainIdx].pt);
}
cv::Mat inlier_mask;
cv::findFundamentalMat(src, dst, inlier_mask, cv::RANSAC);
for (int k = 0; k < inlier_mask.rows; k++)
if (inlier_mask.at<uchar>(k)) inlier.push_back(match[k]);
printf("3DV Tutorial: Image %zd - %zd are matched (%zd / %zd).\n", i, j, inlier.size(), match.size());
// Determine whether the image pair is good or not
if (inlier.size() < min_inlier_num) continue;
printf("3DV Tutorial: Image %zd - %zd are selected.\n", i, j);
match_pair.push_back(std::make_pair(uint(i), uint(j)));
match_inlier.push_back(inlier);
if (show_match)
{
cv::Mat match_image;
cv::drawMatches(img_set[i], img_keypoint[i], img_set[j], img_keypoint[j], match, match_image, cv::Scalar::all(-1), cv::Scalar::all(-1), inlier_mask);
cv::imshow("3DV Tutorial: Structure-from-Motion", match_image);
cv::waitKey();
}
}
}
if (match_pair.size() < 1) return -1;
// Initialize cameras (rotation, translation, intrinsic parameters)
std::vector<SFM::Vec9d> cameras(img_set.size(), SFM::Vec9d(0, 0, 0, 0, 0, 0, f_init, cx_init, cy_init));
uint best_pair = 0;
std::vector<uint> best_score(match_inlier.size());
for (size_t i = 0; i < match_inlier.size(); i++)
best_score[i] = uint(match_inlier[i].size());
cv::Mat best_Xs;
while (true)
{
// 1) Select the best pair
for (size_t i = 0; i < best_score.size(); i++)
if (best_score[i] > best_score[best_pair]) best_pair = uint(i);
if (best_score[best_pair] == 0)
{
printf("3DV Tutorial: There is no good match. Try again after reducing 'max_cos_parallax'.\n");
return -1;
}
const uint best_cam0 = match_pair[best_pair].first, best_cam1 = match_pair[best_pair].second;;
// 2) Estimate relative pose from the best two views (epipolar geometry)
std::vector<cv::Point2d> src, dst;
for (auto itr = match_inlier[best_pair].begin(); itr != match_inlier[best_pair].end(); itr++)
{
src.push_back(img_keypoint[best_cam0][itr->queryIdx].pt);
dst.push_back(img_keypoint[best_cam1][itr->trainIdx].pt);
}
cv::Mat K = getCameraMat(cameras[best_cam0]), R, t, inlier_mask;
cv::Mat E = cv::findEssentialMat(src, dst, K, cv::RANSAC, 0.999, 1, inlier_mask);
cv::recoverPose(E, src, dst, K, R, t, inlier_mask);
for (int r = inlier_mask.rows - 1; r >= 0; r--)
{
if (!inlier_mask.at<uchar>(r))
{
// Remove additionally detected outliers
src.erase(src.begin() + r);
dst.erase(dst.begin() + r);
match_inlier[best_pair].erase(match_inlier[best_pair].begin() + r);
}
}
updateCameraPose(cameras[best_cam1], R, t);
// 3) Reconstruct 3D points of the best two views (triangulation)
cv::Mat P0 = getProjectionMat(cameras[best_cam0]), P1 = getProjectionMat(cameras[best_cam1]);
cv::triangulatePoints(P0, P1, src, dst, best_Xs);
best_Xs.row(0) = best_Xs.row(0) / best_Xs.row(3);
best_Xs.row(1) = best_Xs.row(1) / best_Xs.row(3);
best_Xs.row(2) = best_Xs.row(2) / best_Xs.row(3);
best_score[best_pair] = 0;
for (int i = 0; i < best_Xs.cols; i++)
{
cv::Point3d p(best_Xs.col(i).rowRange(0, 3)); // A 3D point at 'idx'
if (isBadPoint(p, cameras[best_cam0], cameras[best_cam1], Z_limit, max_cos_parallax)) continue; // Do not add if it is bad
best_score[best_pair]++;
}
printf("3DV Tutorial: Image %u - %u were checked as the best match (# of inliers = %zd, # of good points = %d).\n", best_cam0, best_cam1, match_inlier[best_pair].size(), best_score[best_pair]);
if (best_score[best_pair] > 100) break;
best_score[best_pair] = 0;
} // End of the 1st 'while (true)'
const uint best_cam0 = match_pair[best_pair].first, best_cam1 = match_pair[best_pair].second;;
// Prepare the initial 3D points
std::vector<cv::Point3d> Xs;
Xs.reserve(10000); // Allocate memory in advance not to break pointer access in Ceres Solver
std::vector<cv::Vec3b> Xs_rgb;
SFM::VisibilityGraph xs_visited;
for (int i = 0; i < best_Xs.cols; i++)
{
cv::Point3d p(best_Xs.col(i).rowRange(0, 3)); // A 3D point at 'idx'
if (isBadPoint(p, cameras[best_cam0], cameras[best_cam1], Z_limit, max_cos_parallax)) continue; // Do not add if it is bad
uint X_idx = uint(Xs.size()), x0_idx = match_inlier[best_pair][i].queryIdx, x1_idx = match_inlier[best_pair][i].trainIdx;
Xs.push_back(p);
Xs_rgb.push_back(img_set[best_cam0].at<cv::Vec3b>(img_keypoint[best_cam0][x0_idx].pt));
xs_visited[SFM::genKey(best_cam0, x0_idx)] = X_idx;
xs_visited[SFM::genKey(best_cam1, x1_idx)] = X_idx;
}
std::unordered_set<uint> img_added;
img_added.insert(best_cam0);
img_added.insert(best_cam1);
printf("3DV Tutorial: Image %d - %d are complete (# of 3D points = %zd).\n", best_cam0, best_cam1, Xs.size());
// Prepare bundle adjustment
ceres::Problem ba;
for (auto visit = xs_visited.begin(); visit != xs_visited.end(); visit++)
{
int cam_idx = SFM::getCamIdx(visit->first), x_idx = SFM::getObsIdx(visit->first);
const cv::Point2d& x = img_keypoint[cam_idx][x_idx].pt;
SFM::addCostFunc6DOF(ba, Xs[visit->second], x, cameras[cam_idx], ba_loss_width);
}
ceres::Solver::Options options;
options.linear_solver_type = ceres::ITERATIVE_SCHUR;
if (ba_num_iter > 0) options.max_num_iterations = ba_num_iter;
options.num_threads = 8;
options.minimizer_progress_to_stdout = true;
ceres::Solver::Summary summary;
while (true)
{
// 4) Select the next image to add
std::vector<uint> img_score(img_set.size(), 0);
std::vector<std::vector<uint>> match_table(img_set.size());
for (size_t img = 0; img < img_score.size(); img++)
{
if (img_added.find(uint(img)) == img_added.end()) // When the image is not added to the viewing graph
{
for (size_t i = 0; i < match_pair.size(); i++)
{
if (match_pair[i].first == img && img_added.find(match_pair[i].second) != img_added.end()) // When 'first' is the current image and 'second' is already added
{
for (auto itr = match_inlier[i].begin(); itr != match_inlier[i].end(); itr++)
if (xs_visited.find(SFM::genKey(match_pair[i].second, itr->trainIdx)) != xs_visited.end()) // When a matched inlier is in 'Xs', the current image gains more score
img_score[img]++;
match_table[img].push_back(uint(i));
}
else if (match_pair[i].second == img && img_added.find(match_pair[i].first) != img_added.end()) // When 'second' is the current image and 'first' is already added
{
for (auto itr = match_inlier[i].begin(); itr != match_inlier[i].end(); itr++)
if (xs_visited.find(SFM::genKey(match_pair[i].first, itr->queryIdx)) != xs_visited.end()) // When a matched inlier is in 'Xs', the current image gains more score
img_score[img]++;
match_table[img].push_back(uint(i));
}
}
}
}
const auto next_score = std::max_element(img_score.begin(), img_score.end());
const uint next_cam = static_cast<uint>(std::distance(img_score.begin(), next_score));
const std::vector<uint> next_match = match_table[next_cam];
if (next_match.empty()) break;
// Separate points into known (pts_*) and unknown (new_*) for PnP (known) and triangulation (unknown)
std::vector<cv::Point3d> pts_3d;
std::vector<cv::Point2d> pts_2d;
std::vector<uint> pts_key, pts_idx, new_pair_cam;
std::vector<std::vector<cv::Point2d>> new_next_2d(next_match.size()), new_pair_2d(next_match.size());
std::vector<std::vector<uint>> new_next_key(next_match.size()), new_pair_key(next_match.size());
for (size_t i = 0; i < next_match.size(); i++)
{
bool next_is_first = true;
int pair_cam = match_pair[next_match[i]].second;
if (pair_cam == next_cam)
{
next_is_first = false;
pair_cam = match_pair[next_match[i]].first;
}
new_pair_cam.push_back(pair_cam);
for (auto itr = match_inlier[next_match[i]].begin(); itr != match_inlier[next_match[i]].end(); itr++)
{
int next_idx = itr->queryIdx, pair_idx = itr->trainIdx;
if (!next_is_first)
{
next_idx = itr->trainIdx;
pair_idx = itr->queryIdx;
}
auto found = xs_visited.find(SFM::genKey(pair_cam, pair_idx));
if (found != xs_visited.end()) // When the matched point is already known (--> PnP)
{
pts_3d.push_back(Xs[found->second]);
pts_2d.push_back(img_keypoint[next_cam][next_idx].pt);
pts_key.push_back(SFM::genKey(next_cam, next_idx));
pts_idx.push_back(found->second);
}
else // When the matched point is newly observed (--> triangulation)
{
new_next_2d[i].push_back(img_keypoint[next_cam][next_idx].pt);
new_pair_2d[i].push_back(img_keypoint[pair_cam][pair_idx].pt);
new_next_key[i].push_back(SFM::genKey(next_cam, next_idx));
new_pair_key[i].push_back(SFM::genKey(pair_cam, pair_idx));
}
}
}
// 5) Estimate relative pose of the next view (PnP)
if (pts_3d.size() < 10)
{
printf("3DV Tutorial: Image %d is ignored (due to the small number of points).\n", next_cam);
img_added.insert(next_cam);
continue;
}
cv::Mat K = getCameraMat(cameras[next_cam]), rvec, t;
std::vector<int> inlier_idx;
cv::solvePnPRansac(pts_3d, pts_2d, K, cv::Mat::zeros(5, 1, CV_64F), rvec, t, false, 100, 4.0, 0.999, inlier_idx);
updateCameraPose(cameras[next_cam], rvec, t);
for (size_t i = 0; i < pts_key.size(); i++)
{
SFM::addCostFunc6DOF(ba, Xs[pts_idx[i]], pts_2d[i], cameras[next_cam], ba_loss_width);
xs_visited[pts_key[i]] = pts_idx[i];
}
// 6) Reconstruct newly observed 3D points (triangulation)
uint new_pts_total = 0;
for (auto new_pts = new_next_2d.begin(); new_pts != new_next_2d.end(); new_pts++)
new_pts_total += uint(new_pts->size());
if (new_pts_total < 10)
{
printf("3DV Tutorial: Image %d is complete (only localization; no 3D point addition).\n", next_cam);
img_added.insert(next_cam);
continue;
}
cv::Mat P0 = getProjectionMat(cameras[next_cam]);
for (size_t i = 0; i < new_pair_cam.size(); i++)
{
const int pair_cam = new_pair_cam[i];
cv::Mat P1 = getProjectionMat(cameras[pair_cam]), new_Xs;
cv::triangulatePoints(P0, P1, new_next_2d[i], new_pair_2d[i], new_Xs);
new_Xs.row(0) = new_Xs.row(0) / new_Xs.row(3);
new_Xs.row(1) = new_Xs.row(1) / new_Xs.row(3);
new_Xs.row(2) = new_Xs.row(2) / new_Xs.row(3);
for (int j = 0; j < new_Xs.cols; j++)
{
cv::Point3d p(new_Xs.col(j).rowRange(0, 3));
if (isBadPoint(p, cameras[next_cam], cameras[pair_cam], Z_limit, max_cos_parallax)) continue; // Do not add if it is bad
uint X_idx = uint(Xs.size());
Xs.push_back(p);
Xs_rgb.push_back(img_set[next_cam].at<cv::Vec3b>(new_next_2d[i][j]));
xs_visited[new_next_key[i][j]] = X_idx;
xs_visited[new_pair_key[i][j]] = X_idx;
}
}
printf("3DV Tutorial: Image %d is complete (# of 3D points = %zd).\n", next_cam, Xs.size());
// 7) Optimize camera pose and 3D points together (bundle adjustment)
ceres::Solve(options, &ba, &summary);
img_added.insert(next_cam);
} // End of the 2nd 'while (true)'
for (size_t j = 0; j < cameras.size(); j++)
printf("3DV Tutorial: Camera %zd's (f, cx, cy) = (%.3f, %.1f, %.1f)\n", j, cameras[j][6], cameras[j][7], cameras[j][8]);
// Store the 3D points to an XYZ file
FILE* fpts = fopen("sfm_inc(point).xyz", "wt");
if (fpts == NULL) return -1;
for (size_t i = 0; i < Xs.size(); i++)
{
if (Xs[i].z > -Z_limit && Xs[i].z < Z_limit)
fprintf(fpts, "%f %f %f %d %d %d\n", Xs[i].x, Xs[i].y, Xs[i].z, Xs_rgb[i][2], Xs_rgb[i][1], Xs_rgb[i][0]); // Format: x, y, z, R, G, B
}
fclose(fpts);
// Store the camera poses to an XYZ file
FILE* fcam = fopen("sfm_inc(camera).xyz", "wt");
if (fcam == NULL) return -1;
for (size_t j = 0; j < cameras.size(); j++)
{
cv::Vec3d rvec(cameras[j][0], cameras[j][1], cameras[j][2]), t(cameras[j][3], cameras[j][4], cameras[j][5]);
cv::Matx33d R;
cv::Rodrigues(rvec, R);
cv::Vec3d p = -R.t() * t;
fprintf(fcam, "%f %f %f %f %f %f\n", p[0], p[1], p[2], R.t()(0, 2), R.t()(1, 2), R.t()(2, 2)); // Format: x, y, z, n_x, n_y, n_z
}
fclose(fcam);
return 0;
}