You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# Query dataset, k - number of closest elements (returns 2 numpy arrays)
51
44
labels, distances = p.knn_query(data, k=1)
@@ -57,7 +50,25 @@ cd python_bindings
57
50
python3 setup.py install
58
51
```
59
52
60
-
The repo contrains parts of the Non-Metric Space Library's code https://github.com/searchivarius/nmslib
53
+
#### 200M SIFT test reproduction steps:
54
+
To download and extract the bigann dataset:
55
+
```bash
56
+
python3 download_bigann.py
57
+
```
58
+
To compile:
59
+
```bash
60
+
cmake .
61
+
make all
62
+
```
63
+
64
+
To run the test on 200M SIFT subset:
65
+
```bash
66
+
./main
67
+
```
68
+
69
+
The size of the bigann subset (in millions) is controlled by the variable **subset_size_milllions** hardcoded in **sift_1b.cpp**.
70
+
71
+
61
72
62
73
References:
63
74
Malkov, Yu A., and D. A. Yashunin. "Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs." arXiv preprint arXiv:1603.09320 (2016).
0 commit comments