Skip to content

Files

Latest commit

Jul 7, 2025
59470d4 · Jul 7, 2025

History

History

DocSum

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Apr 3, 2025
Jul 3, 2025
Apr 9, 2025
May 10, 2025
Jul 1, 2025
Jul 1, 2025
Mar 19, 2025
Jul 7, 2025
Apr 20, 2025
Jun 25, 2025
Jun 6, 2025

README.md

Document Summarization Application

Large Language Models (LLMs) have revolutionized the way we interact with text. These models can be used to create summaries of news articles, research papers, technical documents, legal documents, multimedia documents, and other types of documents. Suppose you have a set of documents (PDFs, Notion pages, customer questions, multimedia files, etc.) and you want to summarize the content. In this example use case, we utilize LangChain to implement summarization strategies and facilitate LLM inference using Text Generation Inference.

Table of contents

  1. Architecture
  2. Deployment Options

Architecture

The architecture of the Document Summarization Application is illustrated below:

Architecture

The DocSum example is implemented using the component-level microservices defined in GenAIComps. The flow chart below shows the information flow between different microservices for this example.

Loading
---
config:
  flowchart:
    nodeSpacing: 400
    rankSpacing: 100
    curve: linear
  themeVariables:
    fontSize: 50px
---
flowchart LR
    %% Colors %%
    classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
    classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
    classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
    classDef invisible fill:transparent,stroke:transparent;
    style DocSum-MegaService stroke:#000000



    %% Subgraphs %%
    subgraph DocSum-MegaService["DocSum MegaService "]
        direction LR
        M2T([Multimedia2text MicroService]):::blue
        LLM([LLM MicroService]):::blue
    end
    subgraph UserInterface[" User Interface "]
        direction LR
        a([User Input Query]):::orchid
        UI([UI server<br>]):::orchid
    end


    A2T_SRV{{Audio2Text service<br>}}
    V2A_SRV{{Video2Audio service<br>}}
    WSP_SRV{{whisper service<br>}}
    GW([DocSum GateWay<br>]):::orange


    %% Questions interaction
    direction LR
    a[User Document for Summarization] --> UI
    UI --> GW
    GW <==> DocSum-MegaService
    M2T ==> LLM

    %% Embedding service flow
    direction LR
    M2T .-> V2A_SRV
    M2T <-.-> A2T_SRV <-.-> WSP_SRV
    V2A_SRV .-> A2T_SRV

Deployment Options

The table below lists currently available deployment options. They outline in detail the implementation of this example on selected hardware.

Category Deployment Option Description
On-premise Deployments Docker Compose (Xeon) DocSum deployment on Xeon
Docker Compose (Gaudi) DocSum deployment on Gaudi
Docker Compose (ROCm) DocSum deployment on AMD ROCm

Validated Configurations

Deploy Method LLM Engine LLM Model Hardware
Docker Compose vLLM, TGI meta-llama/Meta-Llama-3-8B-Instruct Intel Gaudi
Docker Compose vLLM, TGI meta-llama/Meta-Llama-3-8B-Instruct Intel Xeon
Docker Compose vLLM, TGI Intel/neural-chat-7b-v3-3 AMD ROCm
Helm Charts vLLM, TGI Intel/neural-chat-7b-v3-3 Intel Gaudi
Helm Charts vLLM, TGI Intel/neural-chat-7b-v3-3 Intel Xeon
Helm Charts vLLM, TGI Intel/neural-chat-7b-v3-3 AMD ROCm