SYMBOL VERSIONING FOR OPEN-MPI
Author: Alastair McKinstry <mckinstry@debian.org>
Version: 0.1
Date: 2016-08-10

Summary

This paper proposes to use symbol versioning in Open-MPI in order to facilitate upgrades and development. The status quo expects a “rebuild everything on new version” policy, which while accepted practice in HPC, is non-scalable and impedes using MPI in wide use in multi-core systems with deep library heirarchies. Symbol versioning has been the standard practice in base libraries such as libc, in ELF binaries on most Unix-based OS for 20 years.

Background

What is Symbol versioning

Symbol versioning is a described here: https://gcc.gnu.org/wiki/SymbolVersioning

In short, each object compiled into a dynamic library has an optional symbol attached. These are added as “@@VERSION” suffixes to a symbol name. This can be seen using “readelf”:

	debian:~$ readelf --syms /lib/x86_64-linux-gnu/libc.so.6 | more

Symbol table '.dynsym' contains 2245 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
 1: 000000000001f890 0 SECTION LOCAL DEFAULT 13
 2: 00000000003977c8 0 SECTION LOCAL DEFAULT 22
 3: 0000000000000000 0 OBJECT GLOBAL DEFAULT UND _rtld_global@GLIBC_PRIVATE (26)
 4: 0000000000000000 0 OBJECT GLOBAL DEFAULT UND __libc_enable_secure@GLIBC_PRIVATE (26)
 5: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __tls_get_addr@GLIBC_2.3 (27)
 6: 0000000000000000 0 OBJECT GLOBAL DEFAULT UND _rtld_global_ro@GLIBC_PRIVATE (26)
 7: 0000000000000000 0 FUNC GLOBAL DEFAULT UND _dl_find_dso_for_object@GLIBC_PRIVATE (26)
 8: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _dl_starting_up
 9: 0000000000000000 0 OBJECT GLOBAL DEFAULT UND _dl_argv@GLIBC_PRIVATE (26)
 10: 0000000000069130 349 FUNC GLOBAL DEFAULT 13 putwchar@@GLIBC_2.2.5
 11: 000000000008ce90 32 FUNC GLOBAL DEFAULT 13 __strspn_c1@@GLIBC_2.2.5
 12: 00000000000f6db0 16 FUNC GLOBAL DEFAULT 13 __gethostname_chk@@GLIBC_2.4
 13: 000000000008ceb0 37 FUNC GLOBAL DEFAULT 13 __strspn_c2@@GLIBC_2.2.5
 14: 000000000010d1d0 192 FUNC GLOBAL DEFAULT 13 setrpcent@@GLIBC_2.2.5
 15: 000000000009ece0 10 FUNC GLOBAL DEFAULT 13 __wcstod_l@@GLIBC_2.2.5
 16: 000000000008cee0 70 FUNC GLOBAL DEFAULT 13 __strspn_c3@@GLIBC_2.2.5
 17: 00000000000e7840 33 FUNC GLOBAL DEFAULT 13 epoll_create@@GLIBC_2.3.2
 18: 00000000000d0530 33 FUNC WEAK DEFAULT 13 sched_get_priority_min@@GLIBC_2.2.5

When compiling against a library, if no symbols are specified in the library, versioning is ignored. If the library provides symbols, the symbol version is recorded.
Notice that the version is that of the symbol not the library, so libc 2.23 ships multiple versions of some symbols:
 73: 000000000016b7fc 4 OBJECT GLOBAL DEFAULT 16 _sys_nerr@@GLIBC_2.12
 74: 000000000016b808 4 OBJECT GLOBAL DEFAULT 16 _sys_nerr@GLIBC_2.4
 75: 000000000016b804 4 OBJECT GLOBAL DEFAULT 16 _sys_nerr@GLIBC_2.3
 76: 000000000016b800 4 OBJECT GLOBAL DEFAULT 16 _sys_nerr@GLIBC_2.2.5

The “@@” shows that 2.12 is the current default, while previous versions are only used for those binaries that were linked against them.

e.g.

debian$ gcc hello.c -o hello
#include <stdio.h>
#include <mpi.h>

int main (argc, argv)
 int argc;
 char *argv[];
{
 int rank, size;

 MPI_Init (&argc, &argv); /* starts MPI */
 MPI_Comm_rank (MPI_COMM_WORLD, &rank); /* get current process id */
 MPI_Comm_size (MPI_COMM_WORLD, &size); /* get number of processes */
 printf("Hello world from process %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

debian$ readelf –syms ./hello
…
 48: 0000000000000000 0 FUNC GLOBAL DEFAULT UND printf@@GLIBC_2.2.5
 49: 00000000004008d0 2 FUNC GLOBAL DEFAULT 14 __libc_csu_fini
 50: 0000000000400700 42 FUNC GLOBAL DEFAULT 14 _start
 51: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
 52: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses
 53: 00000000004008d4 0 FUNC GLOBAL DEFAULT 15 _fini
 54: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@@GLIBC_
 55: 0000000000000000 0 FUNC GLOBAL DEFAULT UND MPI_Init
 56: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab
 57: 00000000004008e0 4 OBJECT GLOBAL DEFAULT 16 _IO_stdin_used
…

Here, glibc provides a versioned printf, so its version “GLIBC_2.2.5” is recorded, but MPI_Init provides no version. When linking the executable ‘./hello’ at run-time, the linker looks for a specific version of printf (GLIBC_2.2.5) to use, but will use whatever version of MPI_Init it finds in the specified libraries.

If a new, incompatible version of “printf” is supplied in a revision of libc, it will have a new symbol, and the default symbol would change, but this binary would continue to use version “GLIBC_2.2.5” and hence not break. This allows the API and ABI to change but existing binaries continue to work.

Note that if the API changes, compilation is no longer guaranteed: e.g. if printf were to change signature, the program would break until the code is ported, but existing binaries continue to work.

Implementation

Symbol versioning is implemented using a map file, specifying the version number for symbols:

e.g.

debian$ cat foocode.c

int int_add (int a, int b) {
	return a+b;
}
		
int foo(int a) {
	return a+2;
}
int bar (int b) {
	return a+3;
}
int bax (int a, int b) {
	return int_add(a, b) + 4;
}

$ cat foo.ver

FOO_1.0 {
[bookmark: line-2] global:
[bookmark: line-3] foo;
[bookmark: line-4] bar;
 local:
	*;
[bookmark: line-5]};

FOO_1.1 {
 global:
	bax;
} FOO_1.0;

The library is linked then:

$ gcc -o libfoo.so.1 -shared -Wl,--version-script=foo.ver

This results in foo and bar having version FOO_1.0, bax having version FOO_1.1 and any other objects not being visible, due to the ‘local’ clause.

Now, it is trivially possible to add new functionality to libfoo.so without breaking existing binaries,
but changing binaries can be done with versioned symbols.
For example, if we wish to make bax() operate on doubles:
	double bax (double a, double b) {
		return a+b+4:
	}
Both the API and ABI break. However, symbol versioning enables us to ship two versions of bax(), solving this problem:

int bax_v1 (int a, int b) {
	return int_add (a, b) + 4;
}
double bax_v2 (int a, int b) {
	return a + b + 4;
}

__asm__(".symver original_foo,foo@");
__asm__(".symver bax_v1, bax@VERS_1.1");
[bookmark: line-3-1]__asm__(".symver bax_v2 ,bax@@VERS_1.2");

Publically, libfoo.h might contain:

	#ifdef LIBFOO_H

	double bax(double a, double b);
	int foo (int a);
	int bar (int a);
	
 	#endif

Notice that while the API breaks, and any existing code using the library will cease to compile and need to be ported, all existing binaries will continue to work. This is essential for upgrade-in-place, but also testing and development of deep

Proposal

* Add versioning maps to the public libraries libopenmpi.so.20 and liboshmem.so.20.
* The major version numbers of the public libraries be held at 20 for the 2.x series, i.e. no functionality be dropped.
* The minor version number be incremented on any API/ABI changes. Where symbol signatures change, the methods described above and in the GNU ‘ld’ documentation be used. ie. the next ABI change for OpenMPI should then ship (for example) libopenmpi.so.20.1.0

This change would immediately have no operational impact on OpenMPI, except for a negligible performance gain in linking, due to the linking lookup structures being smaller as “local” symbols are removed (a significant startup gain is seen on C++ programs such as LibreOffice, QT due to this).
However, it does impose an engineering overhead in that the symbols version table needs to be updated on new releases, along with the above “glue” for older symbols.

Platform support
Symbol versioning is a feature of the ELF binary format and is available on Linux, BSD, Solaris and HPUX Operating Systems, but not Mac OSX (MACH format) or AIX (DWARF).

Equivalent functionality may be achieved on OSX using compatibility if the “minor” versioning is used, incremented each time, while holding the major library version constant.

For Mac OS, it is recommended that the library then contains both the major and minor numbers in the name, ie.
* libmpi.20.0.dylib
* libmpi.dylib → libmpi.20.0.dylib

MOTIVATION AND ALTERNATIVES

The standard alternative approach is to have multiple OpenMPI implementions in different directory trees:
	/opt/openmpi-1.10.3
				/bin/…
				/lib/...
	/opt/openmpi-2.20
				/bin/..
				/lib/…
This is often done on HPC systems, typically with the use of ‘modules’ to select the appropriate implementation. Applications are then linked against these.

This breaks down when there are multiple libraries, and levels of libraries, built on top. Currently the dependency tree in Debian Linux is 5-deep, eg. ParaView → libadios → libnetcdf → libhdf5 → libopenmpi. This will only get worse at MPI is embedded deeper in multicore systems; hundreds to thousands of applications and libraries will need to be rebuilt for any OpenMPI release change, and bugfixes become intolerably difficult.

Packaging in Debian-like distributions

Debian (and other distributions) use packages to encapsulate file conflicts when installing software. No two packages may ship the same file (eg. /usr/lib/libopenmpi.so.20.0.0) Thus a library like OpenMPI would typically have two packages: libopenmpi20 shipping /usr/lib/libopenmpi.so.20.0.0, and libopenmpi-dev, containing e.g /usr/include/mpi.h. In the event of a new ABI-changing version (SOVER 21), a new incompatible libopenmpi-dev package will be uploaded, but the shared library would be in libopenmpi21, enabling both old and new libraries to co-exist. The software can then be incrementally upgraded or rebuilt using the new library.

It is anticipated that the private libraries (e.g. libopen-rte.so.20.*) will ship in a separate package with the binaries, openmpi-bin. There will only be one version of openmpi-bin installed at any time. On upgrade to libopenmpi21, the new version of openmpi-bin will use libopenmpi21, but all other binaries using libopenmpi20 will continue to work.
