@@ -122,40 +122,40 @@ def _get_location_from_best(obj):
122
122
# (or center) of the axes box.
123
123
# 1. Key points of the legend
124
124
lower_left_legend = x0_legend
125
- lower_right_legend = np .array ([x1_legend [0 ], x0_legend [1 ]], dtype = np .float_ )
126
- upper_left_legend = np .array ([x0_legend [0 ], x1_legend [1 ]], dtype = np .float_ )
125
+ lower_right_legend = np .array ([x1_legend [0 ], x0_legend [1 ]], dtype = np .float32 )
126
+ upper_left_legend = np .array ([x0_legend [0 ], x1_legend [1 ]], dtype = np .float32 )
127
127
upper_right_legend = x1_legend
128
128
center_legend = x0_legend + dimension_legend / 2.0
129
129
center_left_legend = np .array (
130
- [x0_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float_
130
+ [x0_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float32
131
131
)
132
132
center_right_legend = np .array (
133
- [x1_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float_
133
+ [x1_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float32
134
134
)
135
135
lower_center_legend = np .array (
136
- [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x0_legend [1 ]], dtype = np .float_
136
+ [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x0_legend [1 ]], dtype = np .float32
137
137
)
138
138
upper_center_legend = np .array (
139
- [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x1_legend [1 ]], dtype = np .float_
139
+ [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x1_legend [1 ]], dtype = np .float32
140
140
)
141
141
142
142
# 2. Key points of the axes
143
143
lower_left_axes = x0_axes
144
- lower_right_axes = np .array ([x1_axes [0 ], x0_axes [1 ]], dtype = np .float_ )
145
- upper_left_axes = np .array ([x0_axes [0 ], x1_axes [1 ]], dtype = np .float_ )
144
+ lower_right_axes = np .array ([x1_axes [0 ], x0_axes [1 ]], dtype = np .float32 )
145
+ upper_left_axes = np .array ([x0_axes [0 ], x1_axes [1 ]], dtype = np .float32 )
146
146
upper_right_axes = x1_axes
147
147
center_axes = x0_axes + dimension_axes / 2.0
148
148
center_left_axes = np .array (
149
- [x0_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float_
149
+ [x0_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float32
150
150
)
151
151
center_right_axes = np .array (
152
- [x1_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float_
152
+ [x1_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float32
153
153
)
154
154
lower_center_axes = np .array (
155
- [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x0_axes [1 ]], dtype = np .float_
155
+ [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x0_axes [1 ]], dtype = np .float32
156
156
)
157
157
upper_center_axes = np .array (
158
- [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x1_axes [1 ]], dtype = np .float_
158
+ [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x1_axes [1 ]], dtype = np .float32
159
159
)
160
160
161
161
# 3. Compute the distances between comparable points.
0 commit comments