@@ -854,7 +854,7 @@ def _wrap_applied_output(self, *args, **kwargs):
854
854
raise AbstractMethodError (self )
855
855
856
856
def _concat_objects (self , keys , values , not_indexed_same = False ):
857
- from pandas .tools .merge import concat
857
+ from pandas .tools .concat import concat
858
858
859
859
def reset_identity (values ):
860
860
# reset the identities of the components
@@ -3507,7 +3507,7 @@ def first_non_None_value(values):
3507
3507
# still a series
3508
3508
# path added as of GH 5545
3509
3509
elif all_indexed_same :
3510
- from pandas .tools .merge import concat
3510
+ from pandas .tools .concat import concat
3511
3511
return concat (values )
3512
3512
3513
3513
if not all_indexed_same :
@@ -3540,7 +3540,7 @@ def first_non_None_value(values):
3540
3540
else :
3541
3541
# GH5788 instead of stacking; concat gets the
3542
3542
# dtypes correct
3543
- from pandas .tools .merge import concat
3543
+ from pandas .tools .concat import concat
3544
3544
result = concat (values , keys = key_index ,
3545
3545
names = key_index .names ,
3546
3546
axis = self .axis ).unstack ()
@@ -3588,7 +3588,7 @@ def first_non_None_value(values):
3588
3588
not_indexed_same = not_indexed_same )
3589
3589
3590
3590
def _transform_general (self , func , * args , ** kwargs ):
3591
- from pandas .tools .merge import concat
3591
+ from pandas .tools .concat import concat
3592
3592
3593
3593
applied = []
3594
3594
obj = self ._obj_with_exclusions
@@ -3980,7 +3980,7 @@ def _iterate_column_groupbys(self):
3980
3980
exclusions = self .exclusions )
3981
3981
3982
3982
def _apply_to_column_groupbys (self , func ):
3983
- from pandas .tools .merge import concat
3983
+ from pandas .tools .concat import concat
3984
3984
return concat (
3985
3985
(func (col_groupby ) for _ , col_groupby
3986
3986
in self ._iterate_column_groupbys ()),
@@ -4061,7 +4061,7 @@ def groupby_series(obj, col=None):
4061
4061
if isinstance (obj , Series ):
4062
4062
results = groupby_series (obj )
4063
4063
else :
4064
- from pandas .tools .merge import concat
4064
+ from pandas .tools .concat import concat
4065
4065
results = [groupby_series (obj [col ], col ) for col in obj .columns ]
4066
4066
results = concat (results , axis = 1 )
4067
4067
0 commit comments