@@ -21,12 +21,12 @@ when calling :meth:`~DataFrame.info`:
21
21
22
22
.. ipython :: python
23
23
24
- dtypes = [' int64' , ' float64' , ' datetime64[ns]' , ' timedelta64[ns]' ,
25
- ' complex128' , ' object' , ' bool' ]
24
+ dtypes = [" int64" , " float64" , " datetime64[ns]" , " timedelta64[ns]" ,
25
+ " complex128" , " object" , " bool" ]
26
26
n = 5000
27
27
data = {t: np.random.randint(100 , size = n).astype(t) for t in dtypes}
28
28
df = pd.DataFrame(data)
29
- df[' categorical' ] = df[' object' ].astype(' category' )
29
+ df[" categorical" ] = df[" object" ].astype(" category" )
30
30
31
31
df.info()
32
32
@@ -40,7 +40,7 @@ as it can be expensive to do this deeper introspection.
40
40
41
41
.. ipython :: python
42
42
43
- df.info(memory_usage = ' deep' )
43
+ df.info(memory_usage = " deep" )
44
44
45
45
By default the display option is set to ``True `` but can be explicitly
46
46
overridden by passing the ``memory_usage `` argument when invoking ``df.info() ``.
@@ -155,9 +155,9 @@ index, not membership among the values.
155
155
156
156
.. ipython :: python
157
157
158
- s = pd.Series(range (5 ), index = list (' abcde' ))
158
+ s = pd.Series(range (5 ), index = list (" abcde" ))
159
159
2 in s
160
- ' b ' in s
160
+ " b " in s
161
161
162
162
If this behavior is surprising, keep in mind that using ``in `` on a Python
163
163
dictionary tests keys, not values, and ``Series `` are dict-like.
@@ -206,11 +206,11 @@ arrays. For example:
206
206
207
207
.. ipython :: python
208
208
209
- s = pd.Series([1 , 2 , 3 , 4 , 5 ], index = list (' abcde' ))
209
+ s = pd.Series([1 , 2 , 3 , 4 , 5 ], index = list (" abcde" ))
210
210
s
211
211
s.dtype
212
212
213
- s2 = s.reindex([' a ' , ' b ' , ' c ' , ' f ' , ' u ' ])
213
+ s2 = s.reindex([" a " , " b " , " c " , " f " , " u " ])
214
214
s2
215
215
s2.dtype
216
216
@@ -227,12 +227,12 @@ the nullable-integer extension dtypes provided by pandas
227
227
228
228
.. ipython :: python
229
229
230
- s_int = pd.Series([1 , 2 , 3 , 4 , 5 ], index = list (' abcde' ),
230
+ s_int = pd.Series([1 , 2 , 3 , 4 , 5 ], index = list (" abcde" ),
231
231
dtype = pd.Int64Dtype())
232
232
s_int
233
233
s_int.dtype
234
234
235
- s2_int = s_int.reindex([' a ' , ' b ' , ' c ' , ' f ' , ' u ' ])
235
+ s2_int = s_int.reindex([" a " , " b " , " c " , " f " , " u " ])
236
236
s2_int
237
237
s2_int.dtype
238
238
@@ -334,7 +334,7 @@ constructors using something similar to the following:
334
334
335
335
.. ipython :: python
336
336
337
- x = np.array(list (range (10 )), ' >i4' ) # big endian
337
+ x = np.array(list (range (10 )), " >i4" ) # big endian
338
338
newx = x.byteswap().newbyteorder() # force native byteorder
339
339
s = pd.Series(newx)
340
340
0 commit comments