diff --git a/pvlib/irradiance.py b/pvlib/irradiance.py index 48cc28c33a..7e66281974 100644 --- a/pvlib/irradiance.py +++ b/pvlib/irradiance.py @@ -614,10 +614,11 @@ def isotropic(surface_tilt, dhi): I_{d} = DHI \frac{1 + \cos\beta}{2} Hottel and Woertz's model treats the sky as a uniform source of - diffuse irradiance. Thus the diffuse irradiance from the sky (ground + diffuse irradiance. Thus, the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface can be found from the diffuse horizontal irradiance and the - tilt angle of the surface. + tilt angle of the surface. A discussion of the origin of the + isotropic model can be found in [2]_. Parameters ---------- @@ -636,14 +637,16 @@ def isotropic(surface_tilt, dhi): References ---------- - .. [1] Loutzenhiser P.G. et. al. "Empirical validation of models to + .. [1] Loutzenhiser P.G. et al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 + :doi:`10.1016/j.solener.2006.03.009` - .. [2] Hottel, H.C., Woertz, B.B., 1942. Evaluation of flat-plate solar - heat collector. Trans. ASME 64, 91. + .. [2] Kamphuis, N.R. et al. "Perspectives on the origin, derivation, + meaning, and significance of the isotropic sky model" 2020, Solar + Energy vol. 201. pp. 8-12 + :doi:`10.1016/j.solener.2020.02.067` ''' - sky_diffuse = dhi * (1 + tools.cosd(surface_tilt)) * 0.5 return sky_diffuse