|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +from data.DataSet import ContinuousDataSet |
| 4 | +from data.DataSet import DiscreteDataSet |
| 5 | +from data.DataSet import MixedDataSet |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +import pandas as pd |
| 9 | + |
| 10 | +class DataUtils(): |
| 11 | + |
| 12 | + def load_continuous_data(self, filename, **kwargs): |
| 13 | + |
| 14 | + missing = '*' |
| 15 | + header = True |
| 16 | + comments = "\"" |
| 17 | + set_delimiter = False |
| 18 | + delimiter = 'whitespace' |
| 19 | + |
| 20 | + for key, value in kwargs.items(): |
| 21 | + if key == 'missing': |
| 22 | + missing = value |
| 23 | + elif key == 'header': |
| 24 | + header = bool(value) |
| 25 | + elif key == 'comments': |
| 26 | + comments = value |
| 27 | + elif key == 'delimiter': |
| 28 | + set_delimiter = True |
| 29 | + delimiter = value |
| 30 | + |
| 31 | + if set_delimiter: |
| 32 | + if header: |
| 33 | + data = np.genfromtxt(filename, skip_header=1, missing_values=missing, delimiter=delimiter, comments=comments) |
| 34 | + fp = open(filename, 'r') |
| 35 | + line = fp.readline() |
| 36 | + names = line.split(delimiter) |
| 37 | + fp.close() |
| 38 | + else: |
| 39 | + data = np.genfromtxt(filename, missing_values=missing, delimiter=delimiter, comments=comments) |
| 40 | + num_rows, num_columns = data.shape |
| 41 | + names = ['V'+ str(i) for i in range(num_columns)] |
| 42 | + else: |
| 43 | + if header: |
| 44 | + data = np.genfromtxt(filename, skip_header=1, missing_values=missing, comments=comments) |
| 45 | + fp = open(filename, 'r') |
| 46 | + line = fp.readline() |
| 47 | + names = line.split() |
| 48 | + fp.close() |
| 49 | + else: |
| 50 | + data = np.genfromtxt(filename, missing_values=missing, comments=comments) |
| 51 | + names = ['V'+ str(i) for i in range(num_columns)] |
| 52 | + |
| 53 | + data = ContinuousDataSet(data, names) |
| 54 | + |
| 55 | + return data |
| 56 | + |
| 57 | + def load_discrete_data(self, filename, **kwargs): |
| 58 | + |
| 59 | + missing = '*' |
| 60 | + header = True |
| 61 | + comments = "\"" |
| 62 | + set_delimiter = False |
| 63 | + delimiter = 'whitespace' |
| 64 | + |
| 65 | + for key, value in kwargs.items(): |
| 66 | + if key == 'missing': |
| 67 | + missing = value |
| 68 | + elif key == 'header': |
| 69 | + header = bool(value) |
| 70 | + elif key == 'comments': |
| 71 | + comments = value |
| 72 | + elif key == 'delimiter': |
| 73 | + set_delimiter = True |
| 74 | + delimiter = value |
| 75 | + |
| 76 | + if set_delimiter: |
| 77 | + if header: |
| 78 | + data = np.genfromtxt(filename, skip_header=1, missing_values=missing, delimiter=delimiter, comments=comments, dtype=str) |
| 79 | + fp = open(filename, 'r') |
| 80 | + line = fp.readline() |
| 81 | + names = line.split(delimiter) |
| 82 | + fp.close() |
| 83 | + else: |
| 84 | + data = np.genfromtxt(filename, missing_values=missing, delimiter=delimiter, comments=comments, dtype=str) |
| 85 | + num_rows, num_columns = data.shape |
| 86 | + names = ['V'+ str(i) for i in range(num_columns)] |
| 87 | + else: |
| 88 | + if header: |
| 89 | + data = np.genfromtxt(filename, skip_header=1, missing_values=missing, comments=comments, dtype=str) |
| 90 | + fp = open(filename, 'r') |
| 91 | + line = fp.readline() |
| 92 | + names = line.split() |
| 93 | + fp.close() |
| 94 | + else: |
| 95 | + data = np.genfromtxt(filename, missing_values=missing, comments=comments, dtype=str) |
| 96 | + num_rows, num_columns = data.shape |
| 97 | + names = ['V'+ str(i) for i in range(num_columns)] |
| 98 | + |
| 99 | + data = DiscreteDataSet(data, names) |
| 100 | + |
| 101 | + return data |
| 102 | + |
| 103 | + def load_mixed_data(self, filename, max_discrete, **kwargs): |
| 104 | + missing = '*' |
| 105 | + header = False |
| 106 | + comments = "\"" |
| 107 | + delimiter = '\t' |
| 108 | + |
| 109 | + |
| 110 | + for key, value in kwargs.items(): |
| 111 | + if key == 'missing': |
| 112 | + missing = value |
| 113 | + elif key == 'header': |
| 114 | + header = bool(value) |
| 115 | + elif key == 'comments': |
| 116 | + comments = value |
| 117 | + elif key == 'delimiter': |
| 118 | + delimiter = value |
| 119 | + |
| 120 | + if header: |
| 121 | + data = pd.read_csv(filename, delimiter=delimiter, comment=comments) |
| 122 | + rows = len(data.index) |
| 123 | + columns = len(data.columns) |
| 124 | + fp = open(filename, 'r') |
| 125 | + line = fp.readline() |
| 126 | + names = line.split(delimiter) |
| 127 | + fp.close() |
| 128 | + |
| 129 | + else: |
| 130 | + data = np.genfromtxt(filename, missing_values=missing, delimiter=delimiter, comments=comments, dtype=object) |
| 131 | + rows = len(data.index) |
| 132 | + columns = len(data.columns) |
| 133 | + names = ['V'+ str(i) for i in range(columns)] |
| 134 | + for i in range(columns): |
| 135 | + if np.unique(data[:, i]).size > max_discrete: |
| 136 | + for j in range(rows): |
| 137 | + data[i, j] = float(data[i, j]) |
| 138 | + |
| 139 | + for i in range(columns): |
| 140 | + for j in range(rows): |
| 141 | + if data.iat[i, j] == missing: |
| 142 | + data.iat[i, j] = None |
| 143 | + |
| 144 | + for i in range(columns): |
| 145 | + if len(data.iloc[:, i].unique()) <= max_discrete: |
| 146 | + for j in range(rows): |
| 147 | + data.iloc[j, i] = str(data.iloc[j, i]) |
| 148 | + |
| 149 | + data = MixedDataSet(data, names) |
| 150 | + |
| 151 | + return data |
0 commit comments