|
| 1 | +from typing import Optional, Sequence |
| 2 | + |
| 3 | +import pytensor |
| 4 | +from pymc.model import Model |
| 5 | +from pytensor.graph import Apply, FunctionGraph, Op |
| 6 | +from pytensor.tensor import TensorVariable |
| 7 | + |
| 8 | +from pymc_experimental.utils.pytensorf import StringType |
| 9 | + |
| 10 | + |
| 11 | +class ModelVar(Op): |
| 12 | + """An Op that binds together a RV and its value""" |
| 13 | + |
| 14 | + def make_node(self, rv, value=None, dims: Optional[Sequence[str]] = None): |
| 15 | + assert isinstance(rv, TensorVariable) |
| 16 | + |
| 17 | + if dims is not None: |
| 18 | + dims = [pytensor.as_symbolic(dim) for dim in dims] |
| 19 | + assert all(isinstance(dim.type, StringType) for dim in dims) |
| 20 | + assert len(dims) == rv.type.ndim |
| 21 | + else: |
| 22 | + dims = () |
| 23 | + |
| 24 | + if value is not None: |
| 25 | + assert isinstance(value, TensorVariable) |
| 26 | + assert rv.type.in_same_class(value.type) |
| 27 | + return Apply(self, [rv, value, *dims], [rv.type()]) |
| 28 | + else: |
| 29 | + return Apply(self, [rv, *dims], [rv.type()]) |
| 30 | + |
| 31 | + def infer_shape(self, fgraph, node, inputs_shape): |
| 32 | + return inputs_shape[0] |
| 33 | + |
| 34 | + def do_constant_folding(self, fgraph, node): |
| 35 | + return False |
| 36 | + |
| 37 | + def perform(self, *args, **kwargs): |
| 38 | + raise RuntimeError("ValuedRVs should never be evaluated!") |
| 39 | + |
| 40 | + |
| 41 | +class FreeRV(ModelVar): |
| 42 | + pass |
| 43 | + |
| 44 | + |
| 45 | +class ObservedRV(ModelVar): |
| 46 | + pass |
| 47 | + |
| 48 | + |
| 49 | +class Potential(ModelVar): |
| 50 | + pass |
| 51 | + |
| 52 | + |
| 53 | +class Deterministic(ModelVar): |
| 54 | + pass |
| 55 | + |
| 56 | + |
| 57 | +free_rv = FreeRV() |
| 58 | +observed_rv = ObservedRV() |
| 59 | +potential = Potential() |
| 60 | +deterministic = Deterministic() |
| 61 | + |
| 62 | + |
| 63 | +def toposort_replace(fgraph: FunctionGraph, replacements) -> None: |
| 64 | + toposort = fgraph.toposort() |
| 65 | + sorted_replacements = sorted(replacements, key=lambda pair: toposort.index(pair[0].owner)) |
| 66 | + fgraph.replace_all(tuple(sorted_replacements), import_missing=True) |
| 67 | + |
| 68 | + |
| 69 | +def fgraph_from_model(model: Model) -> FunctionGraph: |
| 70 | + |
| 71 | + # Collect PyTensor variables |
| 72 | + rvs_to_values = model.rvs_to_values |
| 73 | + rvs = list(rvs_to_values.keys()) |
| 74 | + values = list(rvs_to_values.values()) |
| 75 | + free_rvs = model.free_RVs |
| 76 | + deterministics = model.deterministics |
| 77 | + potentials = model.potentials |
| 78 | + |
| 79 | + # Collect PyMC meta-info |
| 80 | + vars_to_dims = model.named_vars_to_dims |
| 81 | + coords = model.coords |
| 82 | + |
| 83 | + # TODO: Do something with these |
| 84 | + dim_lengths = model.dim_lengths |
| 85 | + rvs_to_transforms = model.rvs_to_transforms |
| 86 | + |
| 87 | + # Not supported yet |
| 88 | + if any(v is not None for v in model.rvs_to_total_sizes.values()): |
| 89 | + raise NotImplementedError("Cannot convert models with total_sizes") |
| 90 | + if any(v is not None for v in model.rvs_to_initial_values.values()): |
| 91 | + raise NotImplementedError("Cannot convert models with non-default initial_values") |
| 92 | + |
| 93 | + # We start the `dict` with mappings from the value variables to themselves, |
| 94 | + # to prevent them from being cloned. |
| 95 | + memo = {v: v for v in values} |
| 96 | + |
| 97 | + fgraph = FunctionGraph( |
| 98 | + outputs=rvs + potentials + deterministics, |
| 99 | + clone=True, |
| 100 | + memo=memo, |
| 101 | + copy_orphans=False, |
| 102 | + copy_inputs=False, |
| 103 | + ) |
| 104 | + fgraph.coords = coords |
| 105 | + |
| 106 | + # Introduce dummy Ops to label different types of ModelVariables |
| 107 | + free_rvs_to_values = {memo[k]: v for k, v in rvs_to_values.items() if k in free_rvs} |
| 108 | + observed_rvs_to_values = {memo[k]: v for k, v in rvs_to_values.items() if k not in free_rvs} |
| 109 | + potentials = [memo[k] for k in potentials] |
| 110 | + deterministics = [memo[k] for k in deterministics] |
| 111 | + |
| 112 | + vars = fgraph.outputs |
| 113 | + new_vars = [] |
| 114 | + for var in vars: |
| 115 | + dims = vars_to_dims.get(var.name, None) |
| 116 | + if var in free_rvs_to_values: |
| 117 | + new_var = free_rv(var, free_rvs_to_values[var], dims) |
| 118 | + elif var in observed_rvs_to_values: |
| 119 | + new_var = observed_rv(var, observed_rvs_to_values[var], dims) |
| 120 | + elif var in potentials: |
| 121 | + new_var = potential(var, dims) |
| 122 | + elif var in deterministics: |
| 123 | + new_var = deterministic(var, dims) |
| 124 | + else: |
| 125 | + raise RuntimeError(f"Variable is not RV, Potential nor Deterministic: {new_var}") |
| 126 | + new_vars.append(new_var) |
| 127 | + |
| 128 | + toposort_replace(fgraph, tuple(zip(vars, new_vars))) |
| 129 | + return fgraph |
| 130 | + |
| 131 | + |
| 132 | +def model_from_fgraph(fgraph: FunctionGraph) -> Model: |
| 133 | + model = Model(coords=getattr(fgraph, "coords", None)) |
| 134 | + |
| 135 | + fgraph = fgraph.clone() |
| 136 | + model_vars_to_vars = { |
| 137 | + model_node.outputs[0]: model_node.inputs[0] |
| 138 | + for model_node in fgraph.apply_nodes |
| 139 | + if isinstance(model_node.op, ModelVar) |
| 140 | + } |
| 141 | + toposort_replace(fgraph, tuple(model_vars_to_vars.items())) |
| 142 | + |
| 143 | + for model_var in model_vars_to_vars.keys(): |
| 144 | + if isinstance(model_var.owner.op, FreeRV): |
| 145 | + var, value, *dims = model_var.owner.inputs |
| 146 | + model.free_RVs.append(var) |
| 147 | + model.create_value_var(var, transform=None, value_var=value) |
| 148 | + model.set_initval(var, initval=None) |
| 149 | + elif isinstance(model_var.owner.op, ObservedRV): |
| 150 | + var, value, *dims = model_var.owner.inputs |
| 151 | + model.observed_RVs.append(var) |
| 152 | + model.create_value_var(var, transform=None, value_var=value) |
| 153 | + elif isinstance(model_var.owner.op, Potential): |
| 154 | + var, *dims = model_var.owner.inputs |
| 155 | + model.potentials.append(var) |
| 156 | + elif isinstance(model_var.owner.op, Deterministic): |
| 157 | + var, *dims = model_var.owner.inputs |
| 158 | + model.deterministics.append(var) |
| 159 | + else: |
| 160 | + continue # Raise? |
| 161 | + |
| 162 | + if not dims: |
| 163 | + dims = None |
| 164 | + else: |
| 165 | + dims = [dim.data for dim in dims] |
| 166 | + model.add_named_variable(var, dims=dims) |
| 167 | + |
| 168 | + return model |
0 commit comments