18
18
import pytensor
19
19
import pytensor .tensor as pt
20
20
21
+ from pytensor import config
21
22
from pytensor .compile .ops import as_op
22
23
23
24
import pymc as pm
24
25
25
26
from pymc import Categorical , Metropolis , Model , Normal
26
- from pymc .pytensorf import floatX_array
27
27
28
28
29
29
def simple_model ():
30
30
mu = - 2.1
31
31
tau = 1.3
32
32
with Model () as model :
33
- Normal ("x" , mu , tau = tau , size = 2 , initval = floatX_array ([0.1 , 0.1 ]))
33
+ Normal ("x" , mu , tau = tau , size = 2 , initval = np . array ([0.1 , 0.1 ]). astype ( config . floatX ))
34
34
35
35
return model .initial_point (), model , (mu , tau ** - 0.5 )
36
36
@@ -43,8 +43,8 @@ def another_simple_model():
43
43
44
44
45
45
def simple_categorical ():
46
- p = floatX_array ([0.1 , 0.2 , 0.3 , 0.4 ])
47
- v = floatX_array ([0.0 , 1.0 , 2.0 , 3.0 ])
46
+ p = np . array ([0.1 , 0.2 , 0.3 , 0.4 ])
47
+ v = np . array ([0.0 , 1.0 , 2.0 , 3.0 ])
48
48
with Model () as model :
49
49
Categorical ("x" , p , size = 3 , initval = [1 , 2 , 3 ])
50
50
@@ -72,7 +72,7 @@ def arbitrary_det(value):
72
72
with Model () as model :
73
73
a = Normal ("a" )
74
74
b = arbitrary_det (a )
75
- Normal ("obs" , mu = b .astype ("float64" ), observed = floatX_array ([1 , 3 , 5 ]))
75
+ Normal ("obs" , mu = b .astype ("float64" ), observed = np . array ([1 , 3 , 5 ], dtype = "float64" ))
76
76
77
77
return model .initial_point (), model
78
78
@@ -94,47 +94,47 @@ def simple_2model_continuous():
94
94
95
95
96
96
def mv_simple ():
97
- mu = floatX_array ([- 0.1 , 0.5 , 1.1 ])
98
- p = floatX_array ([[2.0 , 0 , 0 ], [0.05 , 0.1 , 0 ], [1.0 , - 0.05 , 5.5 ]])
97
+ mu = np . array ([- 0.1 , 0.5 , 1.1 ])
98
+ p = np . array ([[2.0 , 0 , 0 ], [0.05 , 0.1 , 0 ], [1.0 , - 0.05 , 5.5 ]])
99
99
tau = np .dot (p , p .T )
100
100
with pm .Model () as model :
101
101
pm .MvNormal (
102
102
"x" ,
103
103
pt .constant (mu ),
104
104
tau = pt .constant (tau ),
105
- initval = floatX_array ([0.1 , 1.0 , 0.8 ]),
105
+ initval = np . array ([0.1 , 1.0 , 0.8 ]),
106
106
)
107
107
H = tau
108
108
C = np .linalg .inv (H )
109
109
return model .initial_point (), model , (mu , C )
110
110
111
111
112
112
def mv_simple_coarse ():
113
- mu = floatX_array ([- 0.2 , 0.6 , 1.2 ])
114
- p = floatX_array ([[2.0 , 0 , 0 ], [0.05 , 0.1 , 0 ], [1.0 , - 0.05 , 5.5 ]])
113
+ mu = np . array ([- 0.2 , 0.6 , 1.2 ])
114
+ p = np . array ([[2.0 , 0 , 0 ], [0.05 , 0.1 , 0 ], [1.0 , - 0.05 , 5.5 ]])
115
115
tau = np .dot (p , p .T )
116
116
with pm .Model () as model :
117
117
pm .MvNormal (
118
118
"x" ,
119
119
pt .constant (mu ),
120
120
tau = pt .constant (tau ),
121
- initval = floatX_array ([0.1 , 1.0 , 0.8 ]),
121
+ initval = np . array ([0.1 , 1.0 , 0.8 ]),
122
122
)
123
123
H = tau
124
124
C = np .linalg .inv (H )
125
125
return model .initial_point (), model , (mu , C )
126
126
127
127
128
128
def mv_simple_very_coarse ():
129
- mu = floatX_array ([- 0.3 , 0.7 , 1.3 ])
130
- p = floatX_array ([[2.0 , 0 , 0 ], [0.05 , 0.1 , 0 ], [1.0 , - 0.05 , 5.5 ]])
129
+ mu = np . array ([- 0.3 , 0.7 , 1.3 ])
130
+ p = np . array ([[2.0 , 0 , 0 ], [0.05 , 0.1 , 0 ], [1.0 , - 0.05 , 5.5 ]])
131
131
tau = np .dot (p , p .T )
132
132
with pm .Model () as model :
133
133
pm .MvNormal (
134
134
"x" ,
135
135
pt .constant (mu ),
136
136
tau = pt .constant (tau ),
137
- initval = floatX_array ([0.1 , 1.0 , 0.8 ]),
137
+ initval = np . array ([0.1 , 1.0 , 0.8 ]),
138
138
)
139
139
H = tau
140
140
C = np .linalg .inv (H )
@@ -144,7 +144,7 @@ def mv_simple_very_coarse():
144
144
def mv_simple_discrete ():
145
145
d = 2
146
146
n = 5
147
- p = floatX_array ([0.15 , 0.85 ])
147
+ p = np . array ([0.15 , 0.85 ])
148
148
with pm .Model () as model :
149
149
pm .Multinomial ("x" , n , pt .constant (p ), initval = np .array ([1 , 4 ]))
150
150
mu = n * p
0 commit comments