"To better understand CF techniques, let us explore a particular example. Imagine we are seeking to recommend jokes using a model which infers five latent factors, $V_j$, for $j = 1,2,3,4,5$. In reality, the latent factors are often unexplainable in a straightforward manner, and most models make no attempt to understand what information is being captured by each factor. However, for the purposes of explanation, let us assume the five latent factors might end up capturing the humor profile we were discussing above. So our five latent factors are: dry, sarcastic, crude, sexual, and political. Then for a particular user $i$, imagine we infer a preference vector $U_i = <0.2, 0.1, 0.3, 0.1, 0.3>$. Also, for a particular item $j$, we infer these values for the latent factors: $V_j = <0.5, 0.5, 0.25, 0.8, 0.9>$. Using the dot product as the prediction function, we would calculate 0.575 as the ranking for that item, which is more or less a neutral preference given our -10 to 10 rating scale.\n",
0 commit comments