Skip to content

Commit bdd8ff5

Browse files
bwengalsColCarroll
authored andcommitted
do references properly, fix some inline math
1 parent a853588 commit bdd8ff5

File tree

1 file changed

+14
-8
lines changed

1 file changed

+14
-8
lines changed

pymc3/gp/gp.py

+14-8
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ class Latent(Base):
5050
noise is assumed. It is called "Latent" because the underlying function
5151
values are treated as latent variables. It has a `prior` method and a
5252
`conditional` method. Given a mean and covariance function the
53-
function $f(x)$ is modeled as,
53+
function :math:`f(x)` is modeled as,
5454
5555
.. math::
5656
@@ -210,7 +210,7 @@ class TP(Latent):
210210
The usage is nearly identical to that of `gp.Latent`. The differences
211211
are that it must be initialized with a degrees of freedom parameter, and
212212
TP is not additive. Given a mean and covariance function, and a degrees of
213-
freedom parameter, the function $f(x)$ is modeled as,
213+
freedom parameter, the function :math:`f(x)` is modeled as,
214214
215215
.. math::
216216
@@ -226,7 +226,10 @@ class TP(Latent):
226226
nu : float
227227
The degrees of freedom
228228
229-
For more information, see https://www.cs.cmu.edu/~andrewgw/tprocess.pdf
229+
References
230+
----------
231+
- Shah, A., Wilson, A. G., and Ghahramani, Z. (2014). Student-t
232+
Processes as Alternatives to Gaussian Processes. arXiv preprint arXiv:1402.4306.
230233
"""
231234

232235
def __init__(self, mean_func=Zero(), cov_func=Constant(0.0), nu=None):
@@ -562,11 +565,6 @@ class MarginalSparse(Marginal):
562565
- FITC: Fully independent Training Conditional
563566
- VFE: Variational Free Energy
564567
565-
For more information on these approximations, see e.g. "A unifying view of
566-
sparse approximate Gaussian process regression", 2005, *Quinonero-Candela, Rasmussen*,
567-
and "Variational Learning of Inducing Variables in Sparse Gaussian Processes",
568-
2009, *Titsias*.
569-
570568
Parameters
571569
----------
572570
cov_func : None, 2D array, or instance of Covariance
@@ -605,6 +603,14 @@ class MarginalSparse(Marginal):
605603
606604
with model:
607605
fcond = gp.conditional("fcond", Xnew=Xnew)
606+
607+
References
608+
----------
609+
- Quinonero-Candela, J., and Rasmussen, C. (2005). A Unifying View of
610+
Sparse Approximate Gaussian Process Regression.
611+
612+
- Titsias, M. (2009). Variational Learning of Inducing Variables in
613+
Sparse Gaussian Processes.
608614
"""
609615

610616
_available_approx = ("FITC", "VFE", "DTC")

0 commit comments

Comments
 (0)