@@ -50,7 +50,7 @@ class Latent(Base):
50
50
noise is assumed. It is called "Latent" because the underlying function
51
51
values are treated as latent variables. It has a `prior` method and a
52
52
`conditional` method. Given a mean and covariance function the
53
- function $ f(x)$ is modeled as,
53
+ function :math:` f(x)` is modeled as,
54
54
55
55
.. math::
56
56
@@ -210,7 +210,7 @@ class TP(Latent):
210
210
The usage is nearly identical to that of `gp.Latent`. The differences
211
211
are that it must be initialized with a degrees of freedom parameter, and
212
212
TP is not additive. Given a mean and covariance function, and a degrees of
213
- freedom parameter, the function $ f(x)$ is modeled as,
213
+ freedom parameter, the function :math:` f(x)` is modeled as,
214
214
215
215
.. math::
216
216
@@ -226,7 +226,10 @@ class TP(Latent):
226
226
nu : float
227
227
The degrees of freedom
228
228
229
- For more information, see https://www.cs.cmu.edu/~andrewgw/tprocess.pdf
229
+ References
230
+ ----------
231
+ - Shah, A., Wilson, A. G., and Ghahramani, Z. (2014). Student-t
232
+ Processes as Alternatives to Gaussian Processes. arXiv preprint arXiv:1402.4306.
230
233
"""
231
234
232
235
def __init__ (self , mean_func = Zero (), cov_func = Constant (0.0 ), nu = None ):
@@ -562,11 +565,6 @@ class MarginalSparse(Marginal):
562
565
- FITC: Fully independent Training Conditional
563
566
- VFE: Variational Free Energy
564
567
565
- For more information on these approximations, see e.g. "A unifying view of
566
- sparse approximate Gaussian process regression", 2005, *Quinonero-Candela, Rasmussen*,
567
- and "Variational Learning of Inducing Variables in Sparse Gaussian Processes",
568
- 2009, *Titsias*.
569
-
570
568
Parameters
571
569
----------
572
570
cov_func : None, 2D array, or instance of Covariance
@@ -605,6 +603,14 @@ class MarginalSparse(Marginal):
605
603
606
604
with model:
607
605
fcond = gp.conditional("fcond", Xnew=Xnew)
606
+
607
+ References
608
+ ----------
609
+ - Quinonero-Candela, J., and Rasmussen, C. (2005). A Unifying View of
610
+ Sparse Approximate Gaussian Process Regression.
611
+
612
+ - Titsias, M. (2009). Variational Learning of Inducing Variables in
613
+ Sparse Gaussian Processes.
608
614
"""
609
615
610
616
_available_approx = ("FITC" , "VFE" , "DTC" )
0 commit comments