diff --git a/pymc/distributions/timeseries.py b/pymc/distributions/timeseries.py index 4b39b38059..9fbc509174 100644 --- a/pymc/distributions/timeseries.py +++ b/pymc/distributions/timeseries.py @@ -361,25 +361,25 @@ class AR(SymbolicDistribution): Parameters ---------- - rho: tensor_like of float + rho : tensor_like of float Tensor of autoregressive coefficients. The n-th entry in the last dimension is the coefficient for the n-th lag. - sigma: tensor_like of float, optional - Standard deviation of innovation (sigma > 0). Defaults to 1. Only required if + sigma : tensor_like of float, default 1 + Standard deviation of innovation (sigma > 0). Only required if tau is not specified. - tau: tensor_like of float + tau : tensor_like of float, optional Precision of innovation (tau > 0). - constant: bool, optional + constant : bool, default False Whether the first element of rho should be used as a constant term in the AR - process. Defaults to False - init_dist: unnamed distribution - Scalar or vector distribution for initial values. Distribution should be - created via the `.dist()` API, and have shape (*shape[:-1], ar_order). If not, - it will be automatically resized. + process. + init_dist : unnamed distribution, optional + Scalar or vector distribution for initial values. Unnamed refers to distributions + created with the ``.dist()`` API. Distributions should have shape (*shape[:-1], ar_order). + If not, it will be automatically resized. Defaults to pm.Normal.dist(0, 100, shape=...). .. warning:: init_dist will be cloned, rendering it independent of the one passed as input. - ar_order: int, optional + ar_order : int, optional Order of the AR process. Inferred from length of the last dimension of rho, if possible. ar_order = rho.shape[-1] if constant else rho.shape[-1] - 1 steps : int, optional