From df01f966321362a3390f8aff08ce415031f08feb Mon Sep 17 00:00:00 2001 From: Anurag Dixit <a.dixit91@gmail.com> Date: Wed, 5 Apr 2023 10:34:03 -0700 Subject: [PATCH 1/2] feat: Added support for aten::unflatten converter Signed-off-by: Anurag Dixit <a.dixit91@gmail.com> --- core/conversion/converters/impl/shuffle.cpp | 98 ++++++++++++ .../conversion/converters/test_shuffle.cpp | 52 +++++++ tests/cpp/BUILD | 14 ++ tests/cpp/test_dynamic_size.cpp | 139 ++++++++++++++++++ 4 files changed, 303 insertions(+) create mode 100644 tests/cpp/test_dynamic_size.cpp diff --git a/core/conversion/converters/impl/shuffle.cpp b/core/conversion/converters/impl/shuffle.cpp index 2df7e653ef..314fe74582 100644 --- a/core/conversion/converters/impl/shuffle.cpp +++ b/core/conversion/converters/impl/shuffle.cpp @@ -64,6 +64,104 @@ static auto shuffle_registrations TORCHTRT_UNUSED = LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions()); return true; }}) + .pattern( + {"aten::unflatten.int(Tensor self, int dim, int[] sizes) -> (Tensor)", + [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool { + auto in = args[0].ITensorOrFreeze(ctx); + auto dim = args[1].unwrapToInt(); + auto in_shape = util::toVec(in->getDimensions()); + std::vector<int64_t> new_shape; + nvinfer1::ITensor* shape_tensor; + if (ctx->input_is_dynamic) { + /* + * In case the dim is negative + * If the dim in negative range is larger than in_shape, + * then it should run into index out of bound error as expected + */ + if (dim < 0) { + dim = in_shape.size() + dim; + } + std::cout << "Dynamic shape case" << std::endl; + LOG_DEBUG("Using dynamic version of reshape layer"); + if (args[2].isITensorList()) { + std::cout << "isTensorList case" << std::endl; + LOG_DEBUG("Shape tensor is an ITensorList"); + auto expand_shape = args[2].unwrapToITensorList(); + auto shape_layer = ctx->net->addShape(*in); + TORCHTRT_CHECK(shape_layer, "Unable to create shape layer from node: " << *n); + auto shape_1d_tensor = shape_layer->getOutput(0); + + std::vector<int> before_dim_indices_vector(dim); + std::iota(before_dim_indices_vector.begin(), before_dim_indices_vector.end(), 0); + + nvinfer1::ITensor* before_dim_gather_out = nullptr; + if(before_dim_indices_vector.size()){ + at::Tensor before_dim_indices = torch::tensor(before_dim_indices_vector).to(torch::kI32); + auto before_dim_indices_out = converters::tensor_to_const(ctx, before_dim_indices); + auto before_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *before_dim_indices_out, 0); + TORCHTRT_CHECK(before_dim_gather_layer, "Unable to create gather layer from node: " << *n); + before_dim_gather_out = before_dim_gather_layer->getOutput(0); + } + + std::vector<int> after_dim_indices_vector(in_shape.size() - (dim + 1)); + std::iota(after_dim_indices_vector.begin(), after_dim_indices_vector.end(), dim + 1); + + nvinfer1::ITensor* after_dim_gather_out = nullptr; + if(after_dim_indices_vector.size()){ + at::Tensor after_dim_indices = torch::tensor(after_dim_indices_vector).to(torch::kI32); + auto after_dim_indices_out = converters::tensor_to_const(ctx, after_dim_indices); + auto after_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *after_dim_indices_out, 0); + TORCHTRT_CHECK(after_dim_gather_layer, "Unable to create gather layer from node: " << *n); + after_dim_gather_out = after_dim_gather_layer->getOutput(0); + } + + std::vector<nvinfer1::ITensor*> shape_tensors; + if(before_dim_gather_out){ + shape_tensors.push_back(before_dim_gather_out); + } + for(auto new_shape_tensor : expand_shape){ + shape_tensors.push_back(new_shape_tensor); + } + if(after_dim_gather_out){ + shape_tensors.push_back(after_dim_gather_out); + } + + auto shape_cat_layer = ctx->net->addConcatenation(shape_tensors.data(), shape_tensors.size()); + TORCHTRT_CHECK(shape_cat_layer, "Unable to create cat layer from node: " << *n); + shape_tensor = shape_cat_layer->getOutput(0); + LOG_DEBUG("Shape tensor shape: " << shape_tensor->getDimensions()); + } else if (args[2].isIntList()) { + auto shape_vec = args[2].unwrapToIntList().vec(); + // New shape + new_shape.insert(new_shape.end(), in_shape.begin(), in_shape.begin() + dim); + new_shape.insert(new_shape.end(), shape_vec.begin(), shape_vec.end()); + new_shape.insert(new_shape.end(), in_shape.begin() + dim + 1, in_shape.end()); + + shape_tensor = tensor_to_const(ctx, torch::tensor(new_shape).to(torch::kI32)); + } else { + LOG_ERROR( + "Invalid IValue type of " << args[2].ivalue_type() + << " detected for shape tensor from node: " << *n); + } + } + else { + new_shape = torch::unflatten(torch::rand(in_shape), dim, args[2].unwrapToIntList().vec()).sizes().vec(); + } + auto shuffle = ctx->net->addShuffle(*in); + shuffle->setName(util::node_info(n).c_str()); + TORCHTRT_CHECK(shuffle, "Unable to create shuffle layer from node: " << *n); + + if (ctx->input_is_dynamic) { + shuffle->setInput(1, *shape_tensor); + } else { + shuffle->setReshapeDimensions(util::toDims(new_shape)); + } + + auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle->getOutput(0)); + LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions()); + + return true; + }}) .pattern( {"aten::reshape(Tensor self, int[] shape) -> (Tensor)", [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool { diff --git a/tests/core/conversion/converters/test_shuffle.cpp b/tests/core/conversion/converters/test_shuffle.cpp index fad50c9340..9c972ba988 100644 --- a/tests/core/conversion/converters/test_shuffle.cpp +++ b/tests/core/conversion/converters/test_shuffle.cpp @@ -364,3 +364,55 @@ TEST(Converters, ATenPixelShuffle5DConvertsCorrectly) { ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6)); } + +TEST(Converters, ATenUnflattenConvertsCorrectly) { + const auto graph = R"IR( + graph(%x.1 : Tensor): + %2 : int = prim::Constant[value=1]() + %3 : int = prim::Constant[value=512]() + %4 : int = prim::Constant[value=1]() + %5 : int = prim::Constant[value=1]() + %6 : int[] = prim::ListConstruct(%3, %4, %5) + %7 : Tensor = aten::unflatten(%x.1, %2, %6) + return (%7))IR"; + + auto g = std::make_shared<torch::jit::Graph>(); + torch::jit::parseIR(graph, g.get()); + + auto in = at::randint(0, 5, {1, 512}, {at::kCUDA}); + auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + + auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in}); + + in = at::clone(in); + params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in}); + + ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6)); +} + +TEST(Converters, ATenUnflattenNegativeDimConvertsCorrectly) { + const auto graph = R"IR( + graph(%x.1 : Tensor): + %2 : int = prim::Constant[value=-1]() + %3 : int = prim::Constant[value=512]() + %4 : int = prim::Constant[value=1]() + %5 : int = prim::Constant[value=1]() + %6 : int[] = prim::ListConstruct(%3, %4, %5) + %7 : Tensor = aten::unflatten(%x.1, %2, %6) + return (%7))IR"; + + auto g = std::make_shared<torch::jit::Graph>(); + torch::jit::parseIR(graph, g.get()); + + auto in = at::randint(0, 5, {1, 512}, {at::kCUDA}); + auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + + auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in}); + + in = at::clone(in); + params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in}); + + ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6)); +} \ No newline at end of file diff --git a/tests/cpp/BUILD b/tests/cpp/BUILD index c34aa09372..709187e1b2 100644 --- a/tests/cpp/BUILD +++ b/tests/cpp/BUILD @@ -16,6 +16,7 @@ test_suite( ":test_compiled_modules", ":test_default_input_types", ":test_dynamic_fallback", + ":test_dynamic_size", ":test_example_tensors", ":test_module_fallback", ":test_modules_as_engines", @@ -32,6 +33,7 @@ test_suite( ":test_compiled_modules", ":test_default_input_types", ":test_dynamic_fallback", + ":test_dynamic_size", ":test_example_tensors", ":test_module_fallback", ":test_modules_as_engines", @@ -142,6 +144,18 @@ cc_test( }), ) +cc_test( + name = "test_dynamic_size", + srcs = ["test_dynamic_size.cpp"], + deps = [ + "//tests/util", + "@googletest//:gtest_main", + ] + select({ + ":use_pre_cxx11_abi": ["@libtorch_pre_cxx11_abi//:libtorch"], + "//conditions:default": ["@libtorch//:libtorch"], + }), +) + cc_test( name = "test_collections", srcs = ["test_collections.cpp"], diff --git a/tests/cpp/test_dynamic_size.cpp b/tests/cpp/test_dynamic_size.cpp new file mode 100644 index 0000000000..bd2bf90d0d --- /dev/null +++ b/tests/cpp/test_dynamic_size.cpp @@ -0,0 +1,139 @@ +#include <torch/torch.h> +#include <string> +#include "core/compiler.h" +#include "gtest/gtest.h" +#include "tests/util/util.h" +#include "torch/csrc/jit/ir/irparser.h" + +TEST(Converters, ATenUnflattenDynShapeShapeCorrectly) { + const auto graph = R"IR( + graph(%x.1 : Tensor): + %2 : int = prim::Constant[value=1]() + %3 : int = prim::Constant[value=512]() + %4 : int = prim::Constant[value=1]() + %5 : int = prim::Constant[value=1]() + %6 : int[] = prim::ListConstruct(%3, %4, %5) + %7 : Tensor = aten::unflatten(%x.1, %2, %6) + return (%7))IR"; + + auto g = std::make_shared<torch::jit::Graph>(); + + torch::jit::parseIR(graph, g.get()); + + auto in = at::randint(0, 10, {1, 512}, {at::kCUDA}); + + auto jit_in = at::clone(in); + auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in}); + + auto trt_in = at::clone(in); + params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true); + + ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6)); +} + +TEST(Converters, ATenUnflattenDynShapeNegativeDimsShapeCorrectly) { + const auto graph = R"IR( + graph(%x.1 : Tensor): + %2 : int = prim::Constant[value=-2]() + %3 : int = prim::Constant[value=512]() + %4 : int = prim::Constant[value=1]() + %5 : int = prim::Constant[value=1]() + %6 : int[] = prim::ListConstruct(%3, %4, %5) + %7 : Tensor = aten::unflatten(%x.1, %2, %6) + return (%7))IR"; + + auto g = std::make_shared<torch::jit::Graph>(); + + torch::jit::parseIR(graph, g.get()); + + auto in = at::randint(0, 10, {1, 512, 2}, {at::kCUDA}); + + auto jit_in = at::clone(in); + auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in}); + + auto trt_in = at::clone(in); + params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true); + + ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6)); +} + +TEST(Converters, ATenUnflattenDynShapeITensorShapeCorrectly) { + const auto graph = R"IR( + graph(%x.1 : Tensor): + %2 : int = prim::Constant[value=1]() + %3 : int = aten::size(%x.1, %2) + %4 : int = prim::Constant[value=256]() + %5 : int = prim::Constant[value=2]() + %6 : int[] = prim::ListConstruct(%4, %5) + %7 : Tensor = aten::unflatten(%x.1, %2, %6) + return (%7))IR"; + auto g = std::make_shared<torch::jit::Graph>(); + torch::jit::parseIR(graph, g.get()); + + auto in = at::randint(0, 10, {1, 512, 1}, {at::kCUDA}); + + auto jit_in = at::clone(in); + auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in}); + + auto trt_in = at::clone(in); + params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true); + + ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6)); +} + +TEST(Converters, ATenUnflattenDynShapeITensorShapeCorrectlyFirstDim) { + const auto graph = R"IR( + graph(%x.1 : Tensor): + %1 : int = prim::Constant[value=0]() + %2 : int = prim::Constant[value=1]() + %3 : int = aten::size(%x.1, %1) + %6 : int[] = prim::ListConstruct(%2, %2, %3, %2, %2) + %7 : Tensor = aten::unflatten(%x.1, %1, %6) + return (%7))IR"; + auto g = std::make_shared<torch::jit::Graph>(); + torch::jit::parseIR(graph, g.get()); + + auto in = at::randint(0, 10, {64, 512, 1}, {at::kCUDA}); + + auto jit_in = at::clone(in); + auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in}); + + auto trt_in = at::clone(in); + params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true); + + ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6)); +} + +TEST(Converters, ATenUnflattenDynShapeITensorShapeCorrectlyLastDim) { + const auto graph = R"IR( + graph(%x.1 : Tensor): + %1 : int = prim::Constant[value=2]() + %2 : int = prim::Constant[value=1]() + %3 : int = aten::size(%x.1, %1) + %5 : int = prim::Constant[value=2]() + %6 : int[] = prim::ListConstruct(%3, %2, %2) + %7 : Tensor = aten::unflatten(%x.1, %5, %6) + return (%7))IR"; + auto g = std::make_shared<torch::jit::Graph>(); + torch::jit::parseIR(graph, g.get()); + + auto in = at::randint(0, 10, {1, 512, 9}, {at::kCUDA}); + + auto jit_in = at::clone(in); + auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in}); + + auto trt_in = at::clone(in); + params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {}); + auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true); + + ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6)); +} \ No newline at end of file From 0c23a2dd444942262f582bca5b46bdbdda0bd6ba Mon Sep 17 00:00:00 2001 From: Anurag Dixit <a.dixit91@gmail.com> Date: Wed, 5 Apr 2023 10:44:21 -0700 Subject: [PATCH 2/2] chore: Trigger lint Signed-off-by: Anurag Dixit <a.dixit91@gmail.com> --- tests/cpp/test_dynamic_size.cpp | 1 + 1 file changed, 1 insertion(+) diff --git a/tests/cpp/test_dynamic_size.cpp b/tests/cpp/test_dynamic_size.cpp index bd2bf90d0d..5870796547 100644 --- a/tests/cpp/test_dynamic_size.cpp +++ b/tests/cpp/test_dynamic_size.cpp @@ -5,6 +5,7 @@ #include "tests/util/util.h" #include "torch/csrc/jit/ir/irparser.h" + TEST(Converters, ATenUnflattenDynShapeShapeCorrectly) { const auto graph = R"IR( graph(%x.1 : Tensor):