|
| 1 | +from math import log |
| 2 | +import torch |
| 3 | + |
| 4 | +from torchao.prototype.common.bitpacking import pack, unpack |
| 5 | +from torchao.dtypes.uint4 import unpack_uint4, pack_uint4 |
| 6 | + |
| 7 | + |
| 8 | +def benchmark(function, num_runs, setup =None): |
| 9 | + args = setup() |
| 10 | + torch.cuda.synchronize() |
| 11 | + start_event = torch.cuda.Event(enable_timing=True) |
| 12 | + end_event = torch.cuda.Event(enable_timing=True) |
| 13 | + start_event.record() |
| 14 | + |
| 15 | + for _ in range(num_runs): |
| 16 | + function(*args) |
| 17 | + |
| 18 | + end_event.record() |
| 19 | + torch.cuda.synchronize() |
| 20 | + return start_event.elapsed_time(end_event) / num_runs |
| 21 | + |
| 22 | + |
| 23 | +def test_vs_existing(): |
| 24 | + def new_(): |
| 25 | + fake_tensor = torch.randint(0, 2**8, (1, 1024,1024), dtype=torch.uint8).cuda() |
| 26 | + packed = pack(fake_tensor, 4, dim=1) |
| 27 | + unpacked = unpack(packed, 4, dim=1) |
| 28 | + def old_(): |
| 29 | + fake_tensor = torch.randint(0, 2**8, (1, 1024,1024), dtype=torch.uint8).cuda() |
| 30 | + packed = pack_uint4(fake_tensor) |
| 31 | + unpacked = unpack_uint4(packed) |
| 32 | + new_ = torch.compile(new_, fullgraph=True) |
| 33 | + old_ = torch.compile(old_, fullgraph=True) |
| 34 | + new_() |
| 35 | + old_() |
| 36 | + print(f"new: {benchmark(new_, 1000)} ms ") |
| 37 | + print(f"old: {benchmark(old_, 1000)} ms") |
| 38 | + |
| 39 | + |
| 40 | +def test_iso_bitpack(): |
| 41 | + def load4x(scale=1024): |
| 42 | + fake_tensor = torch.randint(0, 2**8, (1, 4*scale,scale), dtype=torch.uint8).cuda() |
| 43 | + |
| 44 | + def load2x(scale=1024): |
| 45 | + fake_tensor = torch.randint(0, 2**8, (1, 2*scale,scale), dtype=torch.uint8).cuda() |
| 46 | + |
| 47 | + def loadx(scale=1024): |
| 48 | + fake_tensor = torch.randint(0, 2**8, (1, scale,scale), dtype=torch.uint8).cuda() |
| 49 | + |
| 50 | + def unpack8to2(scale=1024): |
| 51 | + fake_tensor = torch.randint(0, 2**8, (1, scale,scale), dtype=torch.uint8).cuda() |
| 52 | + unpacked_tensor = unpack_c(fake_tensor, 2, dim=1) |
| 53 | + |
| 54 | + def unpack8to4(scale=1024): |
| 55 | + fake_tensor = torch.randint(0, 2**8, (1, scale,scale), dtype=torch.uint8).cuda() |
| 56 | + unpacked_tensor = unpack_c(fake_tensor, 4, dim=1) |
| 57 | + |
| 58 | + def t8to4wmm(scale=1024): |
| 59 | + fake_tensor = torch.randint(0, 2**8, (8, 1024,1024), dtype=torch.uint8).cuda() |
| 60 | + unpacked_tensor = unpack_c(fake_tensor, 4, dim=1) |
| 61 | + |
| 62 | + torch._dynamo.config.specialize_int = True |
| 63 | + # _unpack_c = torch.compile(_unpack, fullgraph=True) |
| 64 | + unpack_c = torch.compile(unpack, fullgraph=True) |
| 65 | + |
| 66 | + scale = [16,64,256,1024,4096] |
| 67 | + load4x_times = [] |
| 68 | + unpack8to2_times = [] |
| 69 | + load2x_times = [] |
| 70 | + unpack8to4_times = [] |
| 71 | + for s in scale: |
| 72 | + res = benchmark(load4x, 50, scale=s) |
| 73 | + load4x_times.append(res) |
| 74 | + print(f"load(1, {4*s},{s}) time: {res} ms") |
| 75 | + |
| 76 | + res=benchmark(unpack8to2, 50, scale=s) |
| 77 | + unpack8to2_times.append(res) |
| 78 | + print(f"load(1, {s},{s}) unpack uint2 time: {res} ms") |
| 79 | + |
| 80 | + res = benchmark(load2x, 50, scale=s) |
| 81 | + load2x_times.append(res) |
| 82 | + print(f"load(1, {2*s},{s}) time: {res} ms") |
| 83 | + |
| 84 | + res = benchmark(unpack8to4, 50, scale=s) |
| 85 | + unpack8to4_times.append(res) |
| 86 | + print(f"load(1, {s},{s}) unpack uint4 time: {res} ms") |
| 87 | + print() |
| 88 | + |
| 89 | + # import matplotlib.pyplot as plt |
| 90 | + # plt.plot(scale, load4x_times, label="load(1, 4x, x)") |
| 91 | + # plt.plot(scale, unpack8to2_times, label="unpack uint8 to uint2") |
| 92 | + # plt.plot(scale, load2x_times, label="load(1, 2x, x)") |
| 93 | + # plt.plot(scale, unpack8to4_times, label="unpack uint8 to uint4") |
| 94 | + # plt.xlabel("scale") |
| 95 | + # plt.ylabel("time (ms)") |
| 96 | + # plt.yscale("log") |
| 97 | + # plt.legend() |
| 98 | + # plt.savefig("benchmark_bitpacking.png") |
| 99 | + |
| 100 | + |
| 101 | +def test_vs_hqqpack(): |
| 102 | + #requires hqq to be installed |
| 103 | + import hqq |
| 104 | + import hqq.core.quantize as hqq_quantize |
| 105 | + HQQLinear = hqq_quantize.HQQLinear |
| 106 | + BaseQuantizeConfig = hqq_quantize.BaseQuantizeConfig |
| 107 | + from torchao.prototype.hqq import pack_2xint4, triton_mixed_mm |
| 108 | + |
| 109 | + BASE_QUANT_CONFIG = { |
| 110 | + "optimize": True, |
| 111 | + "view_as_float": False, |
| 112 | + "nbits": 4, |
| 113 | + "bitpack": False, |
| 114 | + "axis": 1, |
| 115 | + } |
| 116 | + |
| 117 | + def mixed_mm( |
| 118 | + shape, group_size, axis, dtype, transposed, kernel_type, quant_dtype=torch.uint8, pack_fn = True |
| 119 | + ): |
| 120 | + qcfg = { |
| 121 | + **BASE_QUANT_CONFIG, |
| 122 | + **dict(group_size=group_size, axis=axis), |
| 123 | + } |
| 124 | + M, N, K = shape |
| 125 | + |
| 126 | + linear = torch.nn.Linear(K, N, bias=False, dtype=dtype, device="cuda") |
| 127 | + |
| 128 | + quant_config = BaseQuantizeConfig( |
| 129 | + quant_zero=False, quant_scale=False, offload_meta=False, view_as_float=False |
| 130 | + ) |
| 131 | + quant_config.update({"weight_quant_params": qcfg}) |
| 132 | + hqq_linear = HQQLinear(linear, quant_config, compute_dtype=dtype, del_orig=False) |
| 133 | + W_q, meta = hqq_linear.W_q, hqq_linear.meta |
| 134 | + W_q = W_q.to(dtype=quant_dtype) |
| 135 | + W_q = ( |
| 136 | + W_q.reshape(meta["shape"]) |
| 137 | + if quant_config["weight_quant_params"]["bitpack"] == False |
| 138 | + else W_q |
| 139 | + ) |
| 140 | + W_dq = hqq_linear.dequantize() |
| 141 | + |
| 142 | + scales, zeros = meta["scale"], meta["zero"] |
| 143 | + scales = scales.reshape(N, -1) |
| 144 | + zeros = zeros.reshape(N, -1) |
| 145 | + if pack_fn: |
| 146 | + packed_w = pack(W_q.T,4,dim=0,order=False) |
| 147 | + else: |
| 148 | + packed_w = pack_2xint4(W_q.T) |
| 149 | + |
| 150 | + if transposed: |
| 151 | + x = torch.randn(M, N, dtype=dtype, device="cuda") |
| 152 | + hqq_out = x @ W_dq |
| 153 | + |
| 154 | + tt_out = triton_mixed_mm( |
| 155 | + x, |
| 156 | + packed_w, |
| 157 | + scales.T, |
| 158 | + zeros.T, |
| 159 | + transposed=True, |
| 160 | + group_size=group_size, |
| 161 | + fp8_fast_accum=False, |
| 162 | + kernel_type=kernel_type, |
| 163 | + ) |
| 164 | + |
| 165 | + else: |
| 166 | + x = torch.randn(M, K, dtype=dtype, device="cuda") |
| 167 | + hqq_out = x @ W_dq.T |
| 168 | + |
| 169 | + tt_out = triton_mixed_mm( |
| 170 | + x, |
| 171 | + packed_w, |
| 172 | + scales.T, |
| 173 | + zeros.T, |
| 174 | + transposed=False, |
| 175 | + group_size=group_size, |
| 176 | + fp8_fast_accum=False, |
| 177 | + kernel_type=kernel_type, |
| 178 | + ) |
| 179 | + |
| 180 | + shapes = [ |
| 181 | + [16, 128, 128], |
| 182 | + [16, 4096, 4096], |
| 183 | + ] |
| 184 | + group_sizes = [64, 128] |
| 185 | + shape = [16, 128, 128] |
| 186 | + group_size = 64 |
| 187 | + pack = torch.compile(pack, fullgraph=True) |
| 188 | + for i in range(2): |
| 189 | + shape = shapes[i] |
| 190 | + group_size = group_sizes[i] |
| 191 | + print("linear layer size: ", shape) |
| 192 | + print("group size: ", group_size) |
| 193 | + # run once to compile |
| 194 | + test_mixed_mm( |
| 195 | + shape, |
| 196 | + group_size, |
| 197 | + 1, |
| 198 | + torch.float16, |
| 199 | + True, |
| 200 | + "compute_bound", |
| 201 | + torch.uint8, |
| 202 | + ) |
| 203 | + # shape, group_size, axis, dtype, transposed, kernel_type, quant_dtype=torch.uint8 |
| 204 | + print("pack time (ms): ", benchmark(test_mixed_mm, 100, |
| 205 | + shape, |
| 206 | + group_size, |
| 207 | + 1, |
| 208 | + torch.float16, |
| 209 | + True, |
| 210 | + "compute_bound", |
| 211 | + torch.uint8)) |
| 212 | + |
| 213 | + print("pack_2xint4 time (ms): ", benchmark(test_mixed_mm, 100, |
| 214 | + shape, |
| 215 | + group_size, |
| 216 | + 1, |
| 217 | + torch.float16, |
| 218 | + True, |
| 219 | + "compute_bound", #max autotune doesnt work? |
| 220 | + torch.uint8, |
| 221 | + pack_fn=False)) |
| 222 | + print("") |
| 223 | + |
| 224 | + |
| 225 | +if __name__ == "__main__": |
| 226 | + test_vs_existing() |
| 227 | + |
0 commit comments