Skip to content

Commit cabb422

Browse files
committed
[WIP] NVFuser microbenchmarks and filtering tool
ghstack-source-id: 6a88815 Pull Request resolved: #793
1 parent ee89c44 commit cabb422

File tree

4 files changed

+2247
-0
lines changed

4 files changed

+2247
-0
lines changed

run_microbenchmarks.py

Lines changed: 25 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,25 @@
1+
import argparse
2+
from torchbenchmark.microbenchmarks import get_nvfuser_microbenchmarks
3+
4+
5+
def run():
6+
parser = argparse.ArgumentParser(description="Run nvfuser microbenchmarks")
7+
parser.add_argument("--filter", nargs="*", default=[], help='List of benchmarks to test')
8+
parser.add_argument("--fusers", nargs="*", default=[], help='List of fusers to run tests on (options include "no_fuser", "fuser0", "fuser1", "fuser2")')
9+
args = parser.parse_args()
10+
11+
microbenchmarks = get_nvfuser_microbenchmarks()
12+
if len(args.filter) > 0:
13+
microbenchmarks = [x for x in microbenchmarks if x.name in args.filter]
14+
if len(args.fusers) == 0:
15+
args.fusers = ["no_fuser", "fuser1", "fuser2"]
16+
17+
for b in microbenchmarks:
18+
outputs = []
19+
for fuser in args.fusers:
20+
inputs = b.get_inputs()
21+
outputs.append((fuser, b.run_test(inputs, fuser)))
22+
print(f"{b.name}:", "; ".join(f"{name} = {time:.3f} ms" for name, time in outputs))
23+
24+
if __name__ == "__main__":
25+
run()
Lines changed: 120 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,120 @@
1+
from contextlib import contextmanager
2+
from typing import Any, List, Tuple
3+
from torch.testing import make_tensor
4+
import random
5+
import torch
6+
import time
7+
8+
9+
# TODO - a lot of this was copied from pytorch/jit/scripts/log_extract.py, should we put it somewhere in torch? (and where?)
10+
11+
@contextmanager
12+
def no_fuser(*args, **kwargs):
13+
old_cpu_fuse = torch._C._jit_can_fuse_on_cpu()
14+
old_gpu_fuse = torch._C._jit_can_fuse_on_gpu()
15+
old_texpr_fuser_state = torch._C._jit_texpr_fuser_enabled()
16+
old_nvfuser_state = torch._C._jit_nvfuser_enabled()
17+
18+
torch._C._jit_override_can_fuse_on_cpu(False)
19+
torch._C._jit_override_can_fuse_on_gpu(False)
20+
torch._C._jit_set_texpr_fuser_enabled(False)
21+
torch._C._jit_set_nvfuser_enabled(False)
22+
23+
try:
24+
yield
25+
finally:
26+
torch._C._jit_override_can_fuse_on_cpu(old_cpu_fuse)
27+
torch._C._jit_override_can_fuse_on_gpu(old_gpu_fuse)
28+
torch._C._jit_set_texpr_fuser_enabled(old_texpr_fuser_state)
29+
torch._C._jit_set_nvfuser_enabled(old_nvfuser_state)
30+
31+
32+
def make_tensor_from_type(inp_type: torch._C.TensorType):
33+
if inp_type.requires_grad() is not False:
34+
raise NotImplementedError("Tensors with requires_grad are not implemented")
35+
return make_tensor(
36+
inp_type.sizes(),
37+
dtype=inp_type.dtype(),
38+
device=inp_type.device())
39+
40+
41+
def load_graph_and_inputs(ir: str) -> Tuple[Any, List[Any]]:
42+
graph = torch._C.parse_ir(ir)
43+
graph.makeMultiOutputIntoTuple()
44+
inputs = []
45+
for inp in graph.inputs():
46+
if isinstance(inp.type(), torch._C.FloatType):
47+
inputs.append(random.uniform(.1, 100))
48+
elif isinstance(inp.type(), torch._C.IntType):
49+
inputs.append(random.randint(1, 100))
50+
elif isinstance(inp.type(), torch._C.TensorType):
51+
inputs.append(make_tensor_from_type(inp.type()))
52+
else:
53+
raise NotImplementedError(f"A default value is not implemented for type {inp.type()}")
54+
55+
func = torch._C._create_function_from_graph("forward", graph)
56+
torch._C._jit_pass_erase_shape_information(func.graph)
57+
return (func, inputs)
58+
59+
60+
def time_cuda(fn, inputs, test_runs):
61+
start_event = torch.cuda.Event(enable_timing=True)
62+
end_event = torch.cuda.Event(enable_timing=True)
63+
torch.cuda.synchronize()
64+
start_event.record()
65+
torch.cuda.synchronize()
66+
for i in range(test_runs):
67+
fn(*inputs)
68+
torch.cuda.synchronize()
69+
end_event.record()
70+
torch.cuda.synchronize()
71+
return start_event.elapsed_time(end_event) / test_runs
72+
73+
def time_cpu(fn, inputs, test_runs):
74+
s = time.perf_counter()
75+
for _ in range(test_runs):
76+
fn(*inputs)
77+
e = time.perf_counter()
78+
return (e - s) / test_runs
79+
80+
81+
def run_test(ir, inputs, *, warmup_runs=10, test_runs=20) -> float:
82+
graph, _ = load_graph_and_inputs(ir)
83+
for _ in range(warmup_runs):
84+
graph(*inputs)
85+
86+
is_cpu = None
87+
for input in inputs:
88+
if isinstance(input, torch.Tensor):
89+
is_cpu = input.device.type == "cpu"
90+
break
91+
assert is_cpu != None
92+
93+
out = time_cpu(graph, inputs, test_runs) if is_cpu else time_cuda(graph, inputs, test_runs)
94+
return out
95+
96+
97+
class NVFuserBenchmark():
98+
def __init__(self, name, ir, warmup_runs = 10, test_runs = 20):
99+
# TODO - random seed?
100+
self.name = name
101+
self.ir = ir
102+
self.warmup_runs = warmup_runs
103+
self.test_runs = test_runs
104+
105+
def run_test(self, inputs, fuser_name: str) -> float:
106+
if fuser_name == "no_fuser":
107+
with no_fuser():
108+
return run_test(self.ir, inputs, warmup_runs=self.warmup_runs, test_runs=self.test_runs)
109+
with torch.jit.fuser(fuser_name):
110+
return run_test(self.ir, inputs, warmup_runs=self.warmup_runs, test_runs=self.test_runs)
111+
112+
def get_inputs(self) -> List[Any]:
113+
_, inputs = load_graph_and_inputs(ir)
114+
return inputs
115+
116+
117+
def get_nvfuser_microbenchmarks():
118+
from torchbenchmark.microbenchmarks.nvfuser_ir import ir_list
119+
benchmarks = [NVFuserBenchmark(name, ir) for name, ir in ir_list]
120+
return benchmarks

0 commit comments

Comments
 (0)