|
| 1 | +import math |
| 2 | +import random |
| 3 | + |
| 4 | +import torch |
| 5 | +import torch.multiprocessing as multiprocessing |
| 6 | + |
| 7 | +import os.path |
| 8 | +import torchfile |
| 9 | +import numpy |
| 10 | +from PIL import Image |
| 11 | + |
| 12 | +########################################################### |
| 13 | +# These widgets go in some dataset library |
| 14 | +########################################################### |
| 15 | +class Dataset(object): |
| 16 | + |
| 17 | + def size(self): |
| 18 | + raise NotImplementedError() |
| 19 | + |
| 20 | + def get(self, i): |
| 21 | + raise NotImplementedError() |
| 22 | + |
| 23 | +class PermutedDataset(Dataset): |
| 24 | + |
| 25 | + def __init__(self, dataset, perm=None): |
| 26 | + self.dataset = dataset |
| 27 | + self.perm = perm or torch.randperm(dataset.size()) |
| 28 | + |
| 29 | + def size(self): |
| 30 | + return self.dataset.size() |
| 31 | + |
| 32 | + def get(self, i): |
| 33 | + return self.dataset.get(int(self.perm[i])) |
| 34 | + |
| 35 | +class PartitionedDataset(Dataset): |
| 36 | + |
| 37 | + def __init__(self, dataset, part, nPart): |
| 38 | + self.dataset = dataset |
| 39 | + self.start = dataset.size() * part / nPart |
| 40 | + self.end = dataset.size() * (part+1) / nPart |
| 41 | + |
| 42 | + def size(self): |
| 43 | + return self.end - self.start |
| 44 | + |
| 45 | + def get(self, i): |
| 46 | + return self.dataset.get(self.start + i) |
| 47 | + |
| 48 | +########################################################### |
| 49 | +# This is the main imagenet loading logic |
| 50 | +########################################################### |
| 51 | +class ImagenetDataset(Dataset): |
| 52 | + |
| 53 | + def __init__(self, path, jitter): |
| 54 | + self.path = path |
| 55 | + self.data = torchfile.load(path) |
| 56 | + self.jitter = jitter |
| 57 | + self.res = 256 |
| 58 | + |
| 59 | + def size(self): |
| 60 | + # return 1000 |
| 61 | + return len(self.data.imagePath) |
| 62 | + |
| 63 | + def get(self, i): |
| 64 | + imagePath = self.data.imagePath[i].tobytes() |
| 65 | + try: |
| 66 | + # remove the null-terminators |
| 67 | + imagePath = imagePath[:imagePath.index('\0')] |
| 68 | + except: |
| 69 | + pass |
| 70 | + pic = Image.open(imagePath) |
| 71 | + pic = pic.convert('RGB') |
| 72 | + if pic.size[0] > pic.size[1]: |
| 73 | + pic.resize((self.res * pic.size[0]/pic.size[1], self.res), Image.BILINEAR) |
| 74 | + else: |
| 75 | + pic.resize((self.res, self.res * pic.size[1]/pic.size[0]), Image.BILINEAR) |
| 76 | + |
| 77 | + h1 = None |
| 78 | + w1 = None |
| 79 | + if self.jitter: |
| 80 | + # random crop |
| 81 | + h1 = math.ceil(random.uniform(1e-2, pic.size[0] - self.res)) |
| 82 | + w1 = math.ceil(random.uniform(1e-2, pic.size[1] - self.res)) |
| 83 | + else: |
| 84 | + # center crop |
| 85 | + w1 = math.ceil(pic.size[0] - self.res)/2 |
| 86 | + h1 = math.ceil(img.size[1] - self.res)/2 |
| 87 | + |
| 88 | + pic = pic.crop((w1, h1, w1 + self.res, h1 + self.res)) |
| 89 | + |
| 90 | + if self.jitter and random.uniform(0, 1) > 0.5: |
| 91 | + pic = pic.transpose(Image.FLIP_LEFT_RIGHT) |
| 92 | + |
| 93 | + img = torch.ByteTensor(numpy.asarray(pic)) |
| 94 | + img = img.view(pic.size[0], pic.size[1], 3) |
| 95 | + img = img.transpose(0,2).transpose(1,2).contiguous() # put it in CHW format |
| 96 | + |
| 97 | + # lets wait until we have Python bindings for torch.image to do scale/crop |
| 98 | + return img, self.data.imageClass[i] |
| 99 | + |
| 100 | + |
| 101 | +########################################################### |
| 102 | +# Where does this widget go? |
| 103 | +########################################################### |
| 104 | +class MultiQueueIterator(object): |
| 105 | + |
| 106 | + def __init__(self, queue, N, sentinel=None): |
| 107 | + self.queue = queue |
| 108 | + self.N = N |
| 109 | + self.i = 0 |
| 110 | + self.sentinel = sentinel |
| 111 | + |
| 112 | + def __iter__(self): |
| 113 | + return self |
| 114 | + |
| 115 | + def next(self): |
| 116 | + while self.i < self.N: |
| 117 | + e = self.queue.get() |
| 118 | + if e == self.sentinel: |
| 119 | + self.i += 1 |
| 120 | + else: |
| 121 | + return e |
| 122 | + raise StopIteration() |
| 123 | + |
| 124 | + |
| 125 | +########################################################### |
| 126 | +# Shim that runs in each process |
| 127 | +########################################################### |
| 128 | +def _dataLoader(queue, dataset): |
| 129 | + batchSize = 64 |
| 130 | + for i in range(0, dataset.size(), batchSize): |
| 131 | + batch = [dataset.get(x) for x in range(i, i + batchSize) if x < dataset.size()] |
| 132 | + queue.put(zip(*batch)) |
| 133 | + queue.put(None) |
| 134 | + |
| 135 | + |
| 136 | +########################################################### |
| 137 | +# This is what's called externally |
| 138 | +########################################################### |
| 139 | +def makeDataIterator(datasetPath, isTest, nProc): |
| 140 | + dataset = PermutedDataset(ImagenetDataset(datasetPath, not isTest)) |
| 141 | + queue = multiprocessing.Queue() |
| 142 | + processes = [multiprocessing.Process(target=_dataLoader, |
| 143 | + args=(queue, PartitionedDataset(dataset, i, nProc))).start() for i in range(nProc)] |
| 144 | + return dataset, MultiQueueIterator(queue, nProc) |
| 145 | + |
| 146 | +# demo |
| 147 | +if __name__ == "__main__": |
| 148 | + import time |
| 149 | + nDonkeys = 8 |
| 150 | + dataset, dataIterator = makeDataIterator( |
| 151 | + '/mnt/vol/gfsai-east/ai-group/datasets/imagenet/trainCache.t7', |
| 152 | + False, nDonkeys) |
| 153 | + |
| 154 | + start = time.time() |
| 155 | + i = 0 |
| 156 | + for images, labels in dataIterator: |
| 157 | + print("{}/{}, time= {:.04f} s".format(i, dataset.size(), time.time() - start)) |
| 158 | + i += len(images) |
| 159 | + start = time.time() |
0 commit comments