diff --git a/imagenet/resnet.py b/imagenet/resnet.py index d647dd2c28..ea9fc111cb 100644 --- a/imagenet/resnet.py +++ b/imagenet/resnet.py @@ -114,9 +114,9 @@ def _make_layer(self, block, planes, blocks, stride=1): layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) - self.inplanes = planes * block.expansion + self.inplanes = planes * block.expansion for i in range(1, blocks): - layers.append(block(planes, planes)) + layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) diff --git a/imagenet/transforms.py b/imagenet/transforms.py index 773c3752ad..64483f611e 100644 --- a/imagenet/transforms.py +++ b/imagenet/transforms.py @@ -57,8 +57,8 @@ def __init__(self, size): def __call__(self, img): w, h = img.size - x1 = round((w - self.size) / 2) - y1 = round((h - self.size) / 2) + x1 = int(round((w - self.size) / 2)) + y1 = int(round((h - self.size) / 2)) return img.crop((x1, y1, x1 + self.size, y1 + self.size)) @@ -101,8 +101,8 @@ def __call__(self, img): target_area = random.uniform(0.08, 1.0) * area aspect_ratio = random.uniform(3 / 4, 4 / 3) - w = round(math.sqrt(target_area * aspect_ratio)) - h = round(math.sqrt(target_area / aspect_ratio)) + w = int(round(math.sqrt(target_area * aspect_ratio))) + h = int(round(math.sqrt(target_area / aspect_ratio))) if random.random() < 0.5: w, h = h, w