|
| 1 | +import warnings |
| 2 | +from functools import partial |
| 3 | +from typing import Any, Optional, Union |
| 4 | + |
| 5 | +from torchvision.transforms.functional import InterpolationMode |
| 6 | + |
| 7 | +from ....models.quantization.inception import ( |
| 8 | + QuantizableInception3, |
| 9 | + _replace_relu, |
| 10 | + quantize_model, |
| 11 | +) |
| 12 | +from ...transforms.presets import ImageNetEval |
| 13 | +from .._api import Weights, WeightEntry |
| 14 | +from .._meta import _IMAGENET_CATEGORIES |
| 15 | +from ..inception import InceptionV3Weights |
| 16 | + |
| 17 | + |
| 18 | +__all__ = [ |
| 19 | + "QuantizableInception3", |
| 20 | + "QuantizedInceptionV3Weights", |
| 21 | + "inception_v3", |
| 22 | +] |
| 23 | + |
| 24 | + |
| 25 | +class QuantizedInceptionV3Weights(Weights): |
| 26 | + ImageNet1K_FBGEMM_TFV1 = WeightEntry( |
| 27 | + url="https://download.pytorch.org/models/quantized/inception_v3_google_fbgemm-71447a44.pth", |
| 28 | + transforms=partial(ImageNetEval, crop_size=224), |
| 29 | + meta={ |
| 30 | + "size": (224, 224), |
| 31 | + "categories": _IMAGENET_CATEGORIES, |
| 32 | + "interpolation": InterpolationMode.BILINEAR, |
| 33 | + "backend": "fbgemm", |
| 34 | + "quantization": "ptq", |
| 35 | + "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", |
| 36 | + "unquantized": InceptionV3Weights.ImageNet1K_TFV1, |
| 37 | + "acc@1": 69.826, |
| 38 | + "acc@5": 89.404, |
| 39 | + }, |
| 40 | + ) |
| 41 | + |
| 42 | + |
| 43 | +def inception_v3( |
| 44 | + weights: Optional[Union[QuantizedInceptionV3Weights, InceptionV3Weights]] = None, |
| 45 | + progress: bool = True, |
| 46 | + quantize: bool = False, |
| 47 | + **kwargs: Any, |
| 48 | +) -> QuantizableInception3: |
| 49 | + if "pretrained" in kwargs: |
| 50 | + warnings.warn("The argument pretrained is deprecated, please use weights instead.") |
| 51 | + if kwargs.pop("pretrained"): |
| 52 | + weights = QuantizedInceptionV3Weights.ImageNet1K_FBGEMM_TFV1 if quantize else InceptionV3Weights.ImageNet1K_TFV1 |
| 53 | + else: |
| 54 | + weights = None |
| 55 | + |
| 56 | + if quantize: |
| 57 | + weights = QuantizedInceptionV3Weights.verify(weights) |
| 58 | + else: |
| 59 | + weights = InceptionV3Weights.verify(weights) |
| 60 | + |
| 61 | + original_aux_logits = kwargs.get("aux_logits", False) |
| 62 | + if weights is not None: |
| 63 | + if "transform_input" not in kwargs: |
| 64 | + kwargs["transform_input"] = True |
| 65 | + kwargs["aux_logits"] = True |
| 66 | + kwargs["init_weights"] = False |
| 67 | + kwargs["num_classes"] = len(weights.meta["categories"]) |
| 68 | + if "backend" in weights.meta: |
| 69 | + kwargs["backend"] = weights.meta["backend"] |
| 70 | + backend = kwargs.pop("backend", "fbgemm") |
| 71 | + |
| 72 | + model = QuantizableInception3(**kwargs) |
| 73 | + _replace_relu(model) |
| 74 | + if quantize: |
| 75 | + quantize_model(model, backend) |
| 76 | + |
| 77 | + if weights is not None: |
| 78 | + if quantize and not original_aux_logits: |
| 79 | + model.aux_logits = False |
| 80 | + model.AuxLogits = None |
| 81 | + model.load_state_dict(weights.state_dict(progress=progress)) |
| 82 | + if not quantize and not original_aux_logits: |
| 83 | + model.aux_logits = False |
| 84 | + model.AuxLogits = None |
| 85 | + |
| 86 | + return model |
0 commit comments