2
2
3
3
import pytest
4
4
import torch
5
- from common_utils import assert_equal , make_bounding_box , make_image , make_segmentation_mask , make_video
5
+ from common_utils import assert_equal , make_bounding_boxes , make_image , make_segmentation_mask , make_video
6
6
from PIL import Image
7
7
8
8
from torchvision import datapoints
@@ -68,7 +68,7 @@ def test_new_requires_grad(data, input_requires_grad, expected_requires_grad):
68
68
assert datapoint .requires_grad is expected_requires_grad
69
69
70
70
71
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
71
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
72
72
def test_isinstance (make_input ):
73
73
assert isinstance (make_input (), torch .Tensor )
74
74
@@ -80,7 +80,7 @@ def test_wrapping_no_copy():
80
80
assert image .data_ptr () == tensor .data_ptr ()
81
81
82
82
83
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
83
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
84
84
def test_to_wrapping (make_input ):
85
85
dp = make_input ()
86
86
@@ -90,7 +90,7 @@ def test_to_wrapping(make_input):
90
90
assert dp_to .dtype is torch .float64
91
91
92
92
93
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
93
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
94
94
@pytest .mark .parametrize ("return_type" , ["Tensor" , "datapoint" ])
95
95
def test_to_datapoint_reference (make_input , return_type ):
96
96
tensor = torch .rand ((3 , 16 , 16 ), dtype = torch .float64 )
@@ -104,7 +104,7 @@ def test_to_datapoint_reference(make_input, return_type):
104
104
assert type (tensor ) is torch .Tensor
105
105
106
106
107
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
107
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
108
108
@pytest .mark .parametrize ("return_type" , ["Tensor" , "datapoint" ])
109
109
def test_clone_wrapping (make_input , return_type ):
110
110
dp = make_input ()
@@ -116,7 +116,7 @@ def test_clone_wrapping(make_input, return_type):
116
116
assert dp_clone .data_ptr () != dp .data_ptr ()
117
117
118
118
119
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
119
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
120
120
@pytest .mark .parametrize ("return_type" , ["Tensor" , "datapoint" ])
121
121
def test_requires_grad__wrapping (make_input , return_type ):
122
122
dp = make_input (dtype = torch .float )
@@ -131,7 +131,7 @@ def test_requires_grad__wrapping(make_input, return_type):
131
131
assert dp_requires_grad .requires_grad
132
132
133
133
134
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
134
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
135
135
@pytest .mark .parametrize ("return_type" , ["Tensor" , "datapoint" ])
136
136
def test_detach_wrapping (make_input , return_type ):
137
137
dp = make_input (dtype = torch .float ).requires_grad_ (True )
@@ -170,7 +170,7 @@ def test_force_subclass_with_metadata(return_type):
170
170
datapoints .set_return_type ("tensor" )
171
171
172
172
173
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
173
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
174
174
@pytest .mark .parametrize ("return_type" , ["Tensor" , "datapoint" ])
175
175
def test_other_op_no_wrapping (make_input , return_type ):
176
176
dp = make_input ()
@@ -182,7 +182,7 @@ def test_other_op_no_wrapping(make_input, return_type):
182
182
assert type (output ) is (type (dp ) if return_type == "datapoint" else torch .Tensor )
183
183
184
184
185
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
185
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
186
186
@pytest .mark .parametrize (
187
187
"op" ,
188
188
[
@@ -199,7 +199,7 @@ def test_no_tensor_output_op_no_wrapping(make_input, op):
199
199
assert type (output ) is not type (dp )
200
200
201
201
202
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
202
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
203
203
@pytest .mark .parametrize ("return_type" , ["Tensor" , "datapoint" ])
204
204
def test_inplace_op_no_wrapping (make_input , return_type ):
205
205
dp = make_input ()
@@ -212,7 +212,7 @@ def test_inplace_op_no_wrapping(make_input, return_type):
212
212
assert type (dp ) is original_type
213
213
214
214
215
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
215
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
216
216
def test_wrap (make_input ):
217
217
dp = make_input ()
218
218
@@ -225,7 +225,7 @@ def test_wrap(make_input):
225
225
assert dp_new .data_ptr () == output .data_ptr ()
226
226
227
227
228
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
228
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
229
229
@pytest .mark .parametrize ("requires_grad" , [False , True ])
230
230
def test_deepcopy (make_input , requires_grad ):
231
231
dp = make_input (dtype = torch .float )
@@ -242,7 +242,7 @@ def test_deepcopy(make_input, requires_grad):
242
242
assert dp_deepcopied .requires_grad is requires_grad
243
243
244
244
245
- @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_box , make_segmentation_mask , make_video ])
245
+ @pytest .mark .parametrize ("make_input" , [make_image , make_bounding_boxes , make_segmentation_mask , make_video ])
246
246
@pytest .mark .parametrize ("return_type" , ["Tensor" , "datapoint" ])
247
247
@pytest .mark .parametrize (
248
248
"op" ,
0 commit comments