Skip to content

Commit 627dcfd

Browse files
committed
Fix lint
1 parent b3cf14b commit 627dcfd

File tree

6 files changed

+20
-18
lines changed

6 files changed

+20
-18
lines changed

setup.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -39,6 +39,7 @@ def find_version(*file_paths):
3939
'torch',
4040
]
4141

42+
4243
def get_extensions():
4344
this_dir = os.path.dirname(os.path.abspath(__file__))
4445
extensions_dir = os.path.join(this_dir, 'torchvision', 'csrc')
@@ -51,12 +52,12 @@ def get_extensions():
5152
extension = CppExtension
5253

5354
define_macros = []
54-
55+
5556
if torch.cuda.is_available() and CUDA_HOME is not None:
5657
extension = CUDAExtension
5758
sources += source_cuda
5859
define_macros += [('WITH_CUDA', None)]
59-
60+
6061
sources = [os.path.join(extensions_dir, s) for s in sources]
6162

6263
include_dirs = [extensions_dir]

test/test_layers.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,6 @@ def test_roi_align(self):
1818
[0, 0, 5, 5, 10],
1919
[0, 5, 5, 10, 10]], dtype=dtype)
2020

21-
2221
for device in ['cpu', 'cuda']:
2322
device = torch.device(device)
2423
x_n = x.to(device)
@@ -28,7 +27,6 @@ def test_roi_align(self):
2827

2928
assert (outputs[0] - outputs[1]).abs().max() < 1e-6
3029

31-
3230
def test_roi_align_gradient(self):
3331
dtype = torch.float64
3432
device = torch.device('cuda')

torchvision/layers/__init__.py

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,8 @@
1-
__all__ = [
2-
'nms', 'roi_align', 'ROIAlign', 'roi_pool', 'ROIPool'
3-
]
4-
51
from .nms import nms
62
from .roi_align import roi_align, ROIAlign
73
from .roi_pool import roi_pool, ROIPool
4+
5+
6+
__all__ = [
7+
'nms', 'roi_align', 'ROIAlign', 'roi_pool', 'ROIPool'
8+
]

torchvision/layers/nms.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,4 +2,5 @@
22
from torchvision import _C
33

44
nms = _C.nms
5-
5+
nms.__doc__ = """
6+
This function performs Non-maximum suppresion"""

torchvision/layers/roi_align.py

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,6 @@
66

77
from torch.nn.modules.utils import _pair
88

9-
# from ._utils import _C
109
from torchvision import _C
1110

1211

@@ -18,7 +17,8 @@ def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio):
1817
ctx.spatial_scale = spatial_scale
1918
ctx.sampling_ratio = sampling_ratio
2019
ctx.input_shape = input.size()
21-
output = _C.roi_align_forward(input, roi, spatial_scale,
20+
output = _C.roi_align_forward(
21+
input, roi, spatial_scale,
2222
output_size[0], output_size[1], sampling_ratio)
2323
return output
2424

@@ -30,13 +30,15 @@ def backward(ctx, grad_output):
3030
spatial_scale = ctx.spatial_scale
3131
sampling_ratio = ctx.sampling_ratio
3232
bs, ch, h, w = ctx.input_shape
33-
grad_input = _C.roi_align_backward(grad_output, rois, spatial_scale,
33+
grad_input = _C.roi_align_backward(
34+
grad_output, rois, spatial_scale,
3435
output_size[0], output_size[1], bs, ch, h, w, sampling_ratio)
3536
return grad_input, None, None, None, None
3637

3738

3839
roi_align = _ROIAlign.apply
3940

41+
4042
class ROIAlign(nn.Module):
4143
def __init__(self, output_size, spatial_scale, sampling_ratio):
4244
super(ROIAlign, self).__init__()
@@ -54,4 +56,3 @@ def __repr__(self):
5456
tmpstr += ', sampling_ratio=' + str(self.sampling_ratio)
5557
tmpstr += ')'
5658
return tmpstr
57-

torchvision/layers/roi_pool.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,6 @@
66

77
from torch.nn.modules.utils import _pair
88

9-
# from ._utils import _C
109
from torchvision import _C
1110

1211

@@ -16,7 +15,8 @@ def forward(ctx, input, roi, output_size, spatial_scale):
1615
ctx.output_size = _pair(output_size)
1716
ctx.spatial_scale = spatial_scale
1817
ctx.input_shape = input.size()
19-
output, argmax = _C.roi_pool_forward(input, roi, spatial_scale,
18+
output, argmax = _C.roi_pool_forward(
19+
input, roi, spatial_scale,
2020
output_size[0], output_size[1])
2121
ctx.save_for_backward(input, roi, argmax)
2222
return output
@@ -28,12 +28,14 @@ def backward(ctx, grad_output):
2828
output_size = ctx.output_size
2929
spatial_scale = ctx.spatial_scale
3030
bs, ch, h, w = ctx.input_shape
31-
grad_input = _C.roi_pool_backward(grad_output, input, rois, argmax, spatial_scale,
31+
grad_input = _C.roi_pool_backward(
32+
grad_output, input, rois, argmax, spatial_scale,
3233
output_size[0], output_size[1], bs, ch, h, w)
3334
return grad_input, None, None, None
3435

3536
roi_pool = _ROIPool.apply
3637

38+
3739
class ROIPool(nn.Module):
3840
def __init__(self, output_size, spatial_scale):
3941
super(ROIPool, self).__init__()
@@ -49,5 +51,3 @@ def __repr__(self):
4951
tmpstr += ', spatial_scale=' + str(self.spatial_scale)
5052
tmpstr += ')'
5153
return tmpstr
52-
53-

0 commit comments

Comments
 (0)