|
| 1 | +from __future__ import print_function |
| 2 | +import torch.utils.data as data |
| 3 | +from PIL import Image |
| 4 | +import os |
| 5 | +import os.path |
| 6 | +import errno |
| 7 | +import numpy as np |
| 8 | +import sys |
| 9 | +if sys.version_info[0] == 2: |
| 10 | + import cPickle as pickle |
| 11 | +else: |
| 12 | + import pickle |
| 13 | + |
| 14 | +class CIFAR10(data.Dataset): |
| 15 | + base_folder = 'cifar-10-batches-py' |
| 16 | + url = "http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" |
| 17 | + filename = "cifar-10-python.tar.gz" |
| 18 | + tgz_mdf = 'c58f30108f718f92721af3b95e74349a' |
| 19 | + train_list = [ |
| 20 | + ['data_batch_1', 'c99cafc152244af753f735de768cd75f'], |
| 21 | + ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'], |
| 22 | + ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'], |
| 23 | + ['data_batch_4', '634d18415352ddfa80567beed471001a'], |
| 24 | + ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'], |
| 25 | + ] |
| 26 | + |
| 27 | + test_list = [ |
| 28 | + ['test_batch', '40351d587109b95175f43aff81a1287e'], |
| 29 | + ] |
| 30 | + |
| 31 | + def __init__(self, root, train=True, transform=None, target_transform=None, download=False): |
| 32 | + self.root = root |
| 33 | + self.transform = transform |
| 34 | + self.target_transform = target_transform |
| 35 | + self.train = train # training set or test set |
| 36 | + |
| 37 | + if download: |
| 38 | + self.download() |
| 39 | + |
| 40 | + if not self._check_integrity(): |
| 41 | + raise RuntimeError('Dataset not found or corrupted.' |
| 42 | + + ' You can use download=True to download it') |
| 43 | + |
| 44 | + # now load the picked numpy arrays |
| 45 | + self.train_data = [] |
| 46 | + self.train_labels = [] |
| 47 | + for fentry in self.train_list: |
| 48 | + f = fentry[0] |
| 49 | + file = os.path.join(root, self.base_folder, f) |
| 50 | + fo = open(file, 'rb') |
| 51 | + entry = pickle.load(fo) |
| 52 | + self.train_data.append(entry['data']) |
| 53 | + if 'labels' in entry: |
| 54 | + self.train_labels += entry['labels'] |
| 55 | + else: |
| 56 | + self.train_labels += entry['fine_labels'] |
| 57 | + fo.close() |
| 58 | + |
| 59 | + self.train_data = np.concatenate(self.train_data) |
| 60 | + |
| 61 | + f = self.test_list[0][0] |
| 62 | + file = os.path.join(root, self.base_folder, f) |
| 63 | + fo = open(file, 'rb') |
| 64 | + entry = pickle.load(fo) |
| 65 | + self.test_data = entry['data'] |
| 66 | + if 'labels' in entry: |
| 67 | + self.test_labels = entry['labels'] |
| 68 | + else: |
| 69 | + self.test_labels = entry['fine_labels'] |
| 70 | + fo.close() |
| 71 | + |
| 72 | + self.train_data = self.train_data.reshape((50000, 3, 32, 32)) |
| 73 | + self.test_data = self.test_data.reshape((10000, 3, 32, 32)) |
| 74 | + |
| 75 | + def __getitem__(self, index): |
| 76 | + if self.train: |
| 77 | + img, target = self.train_data[index], self.train_labels[index] |
| 78 | + else: |
| 79 | + img, target = self.test_data[index], self.test_labels[index] |
| 80 | + |
| 81 | + if self.transform is not None: |
| 82 | + img = self.transform(img) |
| 83 | + |
| 84 | + if self.target_transform is not None: |
| 85 | + target = self.target_transform(target) |
| 86 | + |
| 87 | + return img, target |
| 88 | + |
| 89 | + def __len__(self): |
| 90 | + if self.train: |
| 91 | + return 50000 |
| 92 | + else: |
| 93 | + return 10000 |
| 94 | + |
| 95 | + def _check_integrity(self): |
| 96 | + import hashlib |
| 97 | + root = self.root |
| 98 | + for fentry in (self.train_list + self.test_list): |
| 99 | + filename, md5 = fentry[0], fentry[1] |
| 100 | + fpath = os.path.join(root, self.base_folder, filename) |
| 101 | + if not os.path.isfile(fpath): |
| 102 | + return False |
| 103 | + md5c = hashlib.md5(open(fpath, 'rb').read()).hexdigest() |
| 104 | + if md5c != md5: |
| 105 | + return False |
| 106 | + return True |
| 107 | + |
| 108 | + def download(self): |
| 109 | + from six.moves import urllib |
| 110 | + import tarfile |
| 111 | + import hashlib |
| 112 | + |
| 113 | + root = self.root |
| 114 | + fpath = os.path.join(root, self.filename) |
| 115 | + |
| 116 | + try: |
| 117 | + os.makedirs(root) |
| 118 | + except OSError as e: |
| 119 | + if e.errno == errno.EEXIST: |
| 120 | + pass |
| 121 | + else: |
| 122 | + raise |
| 123 | + |
| 124 | + if self._check_integrity(): |
| 125 | + print('Files already downloaded and verified') |
| 126 | + return |
| 127 | + |
| 128 | + # downloads file |
| 129 | + if os.path.isfile(fpath) and \ |
| 130 | + hashlib.md5(open(fpath, 'rb').read()).hexdigest() == self.tgz_md5: |
| 131 | + print('Using downloaded file: ' + fpath) |
| 132 | + else: |
| 133 | + print('Downloading ' + self.url + ' to ' + fpath) |
| 134 | + urllib.request.urlretrieve(self.url, fpath) |
| 135 | + |
| 136 | + # extract file |
| 137 | + cwd = os.getcwd() |
| 138 | + print('Extracting tar file') |
| 139 | + tar = tarfile.open(fpath, "r:gz") |
| 140 | + os.chdir(root) |
| 141 | + tar.extractall() |
| 142 | + tar.close() |
| 143 | + os.chdir(cwd) |
| 144 | + print('Done!') |
| 145 | + |
| 146 | + |
| 147 | +class CIFAR100(CIFAR10): |
| 148 | + base_folder = 'cifar-100-python' |
| 149 | + url = "http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" |
| 150 | + filename = "cifar-100-python.tar.gz" |
| 151 | + tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85' |
| 152 | + train_list = [ |
| 153 | + ['train', '16019d7e3df5f24257cddd939b257f8d'], |
| 154 | + ] |
| 155 | + |
| 156 | + test_list = [ |
| 157 | + ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'], |
| 158 | + ] |
| 159 | + |
0 commit comments