|
1 |
| -from collections import defaultdict, deque |
| 1 | +from collections import defaultdict, deque, OrderedDict |
| 2 | +import copy |
2 | 3 | import datetime
|
| 4 | +import hashlib |
3 | 5 | import time
|
4 | 6 | import torch
|
5 | 7 | import torch.distributed as dist
|
@@ -252,3 +254,126 @@ def init_distributed_mode(args):
|
252 | 254 | torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
253 | 255 | world_size=args.world_size, rank=args.rank)
|
254 | 256 | setup_for_distributed(args.rank == 0)
|
| 257 | + |
| 258 | + |
| 259 | +def average_checkpoints(inputs): |
| 260 | + """Loads checkpoints from inputs and returns a model with averaged weights. Original implementation taken from: |
| 261 | + https://github.com/pytorch/fairseq/blob/a48f235636557b8d3bc4922a6fa90f3a0fa57955/scripts/average_checkpoints.py#L16 |
| 262 | +
|
| 263 | + Args: |
| 264 | + inputs (List[str]): An iterable of string paths of checkpoints to load from. |
| 265 | + Returns: |
| 266 | + A dict of string keys mapping to various values. The 'model' key |
| 267 | + from the returned dict should correspond to an OrderedDict mapping |
| 268 | + string parameter names to torch Tensors. |
| 269 | + """ |
| 270 | + params_dict = OrderedDict() |
| 271 | + params_keys = None |
| 272 | + new_state = None |
| 273 | + num_models = len(inputs) |
| 274 | + for fpath in inputs: |
| 275 | + with open(fpath, "rb") as f: |
| 276 | + state = torch.load( |
| 277 | + f, |
| 278 | + map_location=( |
| 279 | + lambda s, _: torch.serialization.default_restore_location(s, "cpu") |
| 280 | + ), |
| 281 | + ) |
| 282 | + # Copies over the settings from the first checkpoint |
| 283 | + if new_state is None: |
| 284 | + new_state = state |
| 285 | + model_params = state["model"] |
| 286 | + model_params_keys = list(model_params.keys()) |
| 287 | + if params_keys is None: |
| 288 | + params_keys = model_params_keys |
| 289 | + elif params_keys != model_params_keys: |
| 290 | + raise KeyError( |
| 291 | + "For checkpoint {}, expected list of params: {}, " |
| 292 | + "but found: {}".format(f, params_keys, model_params_keys) |
| 293 | + ) |
| 294 | + for k in params_keys: |
| 295 | + p = model_params[k] |
| 296 | + if isinstance(p, torch.HalfTensor): |
| 297 | + p = p.float() |
| 298 | + if k not in params_dict: |
| 299 | + params_dict[k] = p.clone() |
| 300 | + # NOTE: clone() is needed in case of p is a shared parameter |
| 301 | + else: |
| 302 | + params_dict[k] += p |
| 303 | + averaged_params = OrderedDict() |
| 304 | + for k, v in params_dict.items(): |
| 305 | + averaged_params[k] = v |
| 306 | + if averaged_params[k].is_floating_point(): |
| 307 | + averaged_params[k].div_(num_models) |
| 308 | + else: |
| 309 | + averaged_params[k] //= num_models |
| 310 | + new_state["model"] = averaged_params |
| 311 | + return new_state |
| 312 | + |
| 313 | + |
| 314 | +def store_model_weights(model, checkpoint_path, checkpoint_key='model', strict=True): |
| 315 | + """ |
| 316 | + This method can be used to prepare weights files for new models. It receives as |
| 317 | + input a model architecture and a checkpoint from the training script and produces |
| 318 | + a file with the weights ready for release. |
| 319 | +
|
| 320 | + Examples: |
| 321 | + from torchvision import models as M |
| 322 | +
|
| 323 | + # Classification |
| 324 | + model = M.mobilenet_v3_large(pretrained=False) |
| 325 | + print(store_model_weights(model, './class.pth')) |
| 326 | +
|
| 327 | + # Quantized Classification |
| 328 | + model = M.quantization.mobilenet_v3_large(pretrained=False, quantize=False) |
| 329 | + model.fuse_model() |
| 330 | + model.qconfig = torch.quantization.get_default_qat_qconfig('qnnpack') |
| 331 | + _ = torch.quantization.prepare_qat(model, inplace=True) |
| 332 | + print(store_model_weights(model, './qat.pth')) |
| 333 | +
|
| 334 | + # Object Detection |
| 335 | + model = M.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=False, pretrained_backbone=False) |
| 336 | + print(store_model_weights(model, './obj.pth')) |
| 337 | +
|
| 338 | + # Segmentation |
| 339 | + model = M.segmentation.deeplabv3_mobilenet_v3_large(pretrained=False, pretrained_backbone=False, aux_loss=True) |
| 340 | + print(store_model_weights(model, './segm.pth', strict=False)) |
| 341 | +
|
| 342 | + Args: |
| 343 | + model (pytorch.nn.Module): The model on which the weights will be loaded for validation purposes. |
| 344 | + checkpoint_path (str): The path of the checkpoint we will load. |
| 345 | + checkpoint_key (str, optional): The key of the checkpoint where the model weights are stored. |
| 346 | + Default: "model". |
| 347 | + strict (bool): whether to strictly enforce that the keys |
| 348 | + in :attr:`state_dict` match the keys returned by this module's |
| 349 | + :meth:`~torch.nn.Module.state_dict` function. Default: ``True`` |
| 350 | +
|
| 351 | + Returns: |
| 352 | + output_path (str): The location where the weights are saved. |
| 353 | + """ |
| 354 | + # Store the new model next to the checkpoint_path |
| 355 | + checkpoint_path = os.path.abspath(checkpoint_path) |
| 356 | + output_dir = os.path.dirname(checkpoint_path) |
| 357 | + |
| 358 | + # Deep copy to avoid side-effects on the model object. |
| 359 | + model = copy.deepcopy(model) |
| 360 | + checkpoint = torch.load(checkpoint_path, map_location='cpu') |
| 361 | + |
| 362 | + # Load the weights to the model to validate that everything works |
| 363 | + # and remove unnecessary weights (such as auxiliaries, etc) |
| 364 | + model.load_state_dict(checkpoint[checkpoint_key], strict=strict) |
| 365 | + |
| 366 | + tmp_path = os.path.join(output_dir, str(model.__hash__())) |
| 367 | + torch.save(model.state_dict(), tmp_path) |
| 368 | + |
| 369 | + sha256_hash = hashlib.sha256() |
| 370 | + with open(tmp_path, "rb") as f: |
| 371 | + # Read and update hash string value in blocks of 4K |
| 372 | + for byte_block in iter(lambda: f.read(4096), b""): |
| 373 | + sha256_hash.update(byte_block) |
| 374 | + hh = sha256_hash.hexdigest() |
| 375 | + |
| 376 | + output_path = os.path.join(output_dir, "weights-" + str(hh[:8]) + ".pth") |
| 377 | + os.replace(tmp_path, output_path) |
| 378 | + |
| 379 | + return output_path |
0 commit comments