|
1 |
| -from typing import Any |
| 1 | +from typing import Union |
2 | 2 |
|
3 | 3 | import PIL.Image
|
4 | 4 | import torch
|
5 | 5 | from torchvision.prototype import features
|
6 | 6 | from torchvision.transforms import functional_tensor as _FT, functional_pil as _FP
|
7 | 7 |
|
8 | 8 |
|
| 9 | +# shortcut type |
| 10 | +DType = Union[torch.Tensor, PIL.Image.Image, features._Feature] |
| 11 | + |
9 | 12 | adjust_brightness_image_tensor = _FT.adjust_brightness
|
10 | 13 | adjust_brightness_image_pil = _FP.adjust_brightness
|
11 | 14 |
|
12 | 15 |
|
13 |
| -def adjust_brightness(inpt: Any, brightness_factor: float) -> Any: |
| 16 | +def adjust_brightness(inpt: DType, brightness_factor: float) -> DType: |
14 | 17 | if isinstance(inpt, features._Feature):
|
15 | 18 | return inpt.adjust_brightness(brightness_factor=brightness_factor)
|
16 |
| - elif isinstance(inpt, PIL.Image.Image): |
| 19 | + if isinstance(inpt, PIL.Image.Image): |
17 | 20 | return adjust_brightness_image_pil(inpt, brightness_factor=brightness_factor)
|
18 |
| - elif isinstance(inpt, torch.Tensor): |
19 |
| - return adjust_brightness_image_tensor(inpt, brightness_factor=brightness_factor) |
20 |
| - else: |
21 |
| - return inpt |
| 21 | + return adjust_brightness_image_tensor(inpt, brightness_factor=brightness_factor) |
22 | 22 |
|
23 | 23 |
|
24 | 24 | adjust_saturation_image_tensor = _FT.adjust_saturation
|
25 | 25 | adjust_saturation_image_pil = _FP.adjust_saturation
|
26 | 26 |
|
27 | 27 |
|
28 |
| -def adjust_saturation(inpt: Any, saturation_factor: float) -> Any: |
| 28 | +def adjust_saturation(inpt: DType, saturation_factor: float) -> DType: |
29 | 29 | if isinstance(inpt, features._Feature):
|
30 | 30 | return inpt.adjust_saturation(saturation_factor=saturation_factor)
|
31 |
| - elif isinstance(inpt, PIL.Image.Image): |
| 31 | + if isinstance(inpt, PIL.Image.Image): |
32 | 32 | return adjust_saturation_image_pil(inpt, saturation_factor=saturation_factor)
|
33 |
| - elif isinstance(inpt, torch.Tensor): |
34 |
| - return adjust_saturation_image_tensor(inpt, saturation_factor=saturation_factor) |
35 |
| - else: |
36 |
| - return inpt |
| 33 | + return adjust_saturation_image_tensor(inpt, saturation_factor=saturation_factor) |
37 | 34 |
|
38 | 35 |
|
39 | 36 | adjust_contrast_image_tensor = _FT.adjust_contrast
|
40 | 37 | adjust_contrast_image_pil = _FP.adjust_contrast
|
41 | 38 |
|
42 | 39 |
|
43 |
| -def adjust_contrast(inpt: Any, contrast_factor: float) -> Any: |
| 40 | +def adjust_contrast(inpt: DType, contrast_factor: float) -> DType: |
44 | 41 | if isinstance(inpt, features._Feature):
|
45 | 42 | return inpt.adjust_contrast(contrast_factor=contrast_factor)
|
46 |
| - elif isinstance(inpt, PIL.Image.Image): |
| 43 | + if isinstance(inpt, PIL.Image.Image): |
47 | 44 | return adjust_contrast_image_pil(inpt, contrast_factor=contrast_factor)
|
48 |
| - elif isinstance(inpt, torch.Tensor): |
49 |
| - return adjust_contrast_image_tensor(inpt, contrast_factor=contrast_factor) |
50 |
| - else: |
51 |
| - return inpt |
| 45 | + return adjust_contrast_image_tensor(inpt, contrast_factor=contrast_factor) |
52 | 46 |
|
53 | 47 |
|
54 | 48 | adjust_sharpness_image_tensor = _FT.adjust_sharpness
|
55 | 49 | adjust_sharpness_image_pil = _FP.adjust_sharpness
|
56 | 50 |
|
57 | 51 |
|
58 |
| -def adjust_sharpness(inpt: Any, sharpness_factor: float) -> Any: |
| 52 | +def adjust_sharpness(inpt: DType, sharpness_factor: float) -> DType: |
59 | 53 | if isinstance(inpt, features._Feature):
|
60 | 54 | return inpt.adjust_sharpness(sharpness_factor=sharpness_factor)
|
61 |
| - elif isinstance(inpt, PIL.Image.Image): |
| 55 | + if isinstance(inpt, PIL.Image.Image): |
62 | 56 | return adjust_sharpness_image_pil(inpt, sharpness_factor=sharpness_factor)
|
63 |
| - elif isinstance(inpt, torch.Tensor): |
64 |
| - return adjust_sharpness_image_tensor(inpt, sharpness_factor=sharpness_factor) |
65 |
| - else: |
66 |
| - return inpt |
| 57 | + return adjust_sharpness_image_tensor(inpt, sharpness_factor=sharpness_factor) |
67 | 58 |
|
68 | 59 |
|
69 | 60 | adjust_hue_image_tensor = _FT.adjust_hue
|
70 | 61 | adjust_hue_image_pil = _FP.adjust_hue
|
71 | 62 |
|
72 | 63 |
|
73 |
| -def adjust_hue(inpt: Any, hue_factor: float) -> Any: |
| 64 | +def adjust_hue(inpt: DType, hue_factor: float) -> DType: |
74 | 65 | if isinstance(inpt, features._Feature):
|
75 | 66 | return inpt.adjust_hue(hue_factor=hue_factor)
|
76 |
| - elif isinstance(inpt, PIL.Image.Image): |
| 67 | + if isinstance(inpt, PIL.Image.Image): |
77 | 68 | return adjust_hue_image_pil(inpt, hue_factor=hue_factor)
|
78 |
| - elif isinstance(inpt, torch.Tensor): |
79 |
| - return adjust_hue_image_tensor(inpt, hue_factor=hue_factor) |
80 |
| - else: |
81 |
| - return inpt |
| 69 | + return adjust_hue_image_tensor(inpt, hue_factor=hue_factor) |
82 | 70 |
|
83 | 71 |
|
84 | 72 | adjust_gamma_image_tensor = _FT.adjust_gamma
|
85 | 73 | adjust_gamma_image_pil = _FP.adjust_gamma
|
86 | 74 |
|
87 | 75 |
|
88 |
| -def adjust_gamma(inpt: Any, gamma: float, gain: float = 1) -> Any: |
| 76 | +def adjust_gamma(inpt: DType, gamma: float, gain: float = 1) -> DType: |
89 | 77 | if isinstance(inpt, features._Feature):
|
90 | 78 | return inpt.adjust_gamma(gamma=gamma, gain=gain)
|
91 |
| - elif isinstance(inpt, PIL.Image.Image): |
| 79 | + if isinstance(inpt, PIL.Image.Image): |
92 | 80 | return adjust_gamma_image_pil(inpt, gamma=gamma, gain=gain)
|
93 |
| - elif isinstance(inpt, torch.Tensor): |
94 |
| - return adjust_gamma_image_tensor(inpt, gamma=gamma, gain=gain) |
95 |
| - else: |
96 |
| - return inpt |
| 81 | + return adjust_gamma_image_tensor(inpt, gamma=gamma, gain=gain) |
97 | 82 |
|
98 | 83 |
|
99 | 84 | posterize_image_tensor = _FT.posterize
|
100 | 85 | posterize_image_pil = _FP.posterize
|
101 | 86 |
|
102 | 87 |
|
103 |
| -def posterize(inpt: Any, bits: int) -> Any: |
| 88 | +def posterize(inpt: DType, bits: int) -> DType: |
104 | 89 | if isinstance(inpt, features._Feature):
|
105 | 90 | return inpt.posterize(bits=bits)
|
106 |
| - elif isinstance(inpt, PIL.Image.Image): |
| 91 | + if isinstance(inpt, PIL.Image.Image): |
107 | 92 | return posterize_image_pil(inpt, bits=bits)
|
108 |
| - elif isinstance(inpt, torch.Tensor): |
109 |
| - return posterize_image_tensor(inpt, bits=bits) |
110 |
| - else: |
111 |
| - return inpt |
| 93 | + return posterize_image_tensor(inpt, bits=bits) |
112 | 94 |
|
113 | 95 |
|
114 | 96 | solarize_image_tensor = _FT.solarize
|
115 | 97 | solarize_image_pil = _FP.solarize
|
116 | 98 |
|
117 | 99 |
|
118 |
| -def solarize(inpt: Any, threshold: float) -> Any: |
| 100 | +def solarize(inpt: DType, threshold: float) -> DType: |
119 | 101 | if isinstance(inpt, features._Feature):
|
120 | 102 | return inpt.solarize(threshold=threshold)
|
121 |
| - elif isinstance(inpt, PIL.Image.Image): |
| 103 | + if isinstance(inpt, PIL.Image.Image): |
122 | 104 | return solarize_image_pil(inpt, threshold=threshold)
|
123 |
| - elif isinstance(inpt, torch.Tensor): |
124 |
| - return solarize_image_tensor(inpt, threshold=threshold) |
125 |
| - else: |
126 |
| - return inpt |
| 105 | + return solarize_image_tensor(inpt, threshold=threshold) |
127 | 106 |
|
128 | 107 |
|
129 | 108 | autocontrast_image_tensor = _FT.autocontrast
|
130 | 109 | autocontrast_image_pil = _FP.autocontrast
|
131 | 110 |
|
132 | 111 |
|
133 |
| -def autocontrast(inpt: Any) -> Any: |
| 112 | +def autocontrast(inpt: DType) -> DType: |
134 | 113 | if isinstance(inpt, features._Feature):
|
135 | 114 | return inpt.autocontrast()
|
136 |
| - elif isinstance(inpt, PIL.Image.Image): |
| 115 | + if isinstance(inpt, PIL.Image.Image): |
137 | 116 | return autocontrast_image_pil(inpt)
|
138 |
| - elif isinstance(inpt, torch.Tensor): |
139 |
| - return autocontrast_image_tensor(inpt) |
140 |
| - else: |
141 |
| - return inpt |
| 117 | + return autocontrast_image_tensor(inpt) |
142 | 118 |
|
143 | 119 |
|
144 | 120 | equalize_image_tensor = _FT.equalize
|
145 | 121 | equalize_image_pil = _FP.equalize
|
146 | 122 |
|
147 | 123 |
|
148 |
| -def equalize(inpt: Any) -> Any: |
| 124 | +def equalize(inpt: DType) -> DType: |
149 | 125 | if isinstance(inpt, features._Feature):
|
150 | 126 | return inpt.equalize()
|
151 |
| - elif isinstance(inpt, PIL.Image.Image): |
| 127 | + if isinstance(inpt, PIL.Image.Image): |
152 | 128 | return equalize_image_pil(inpt)
|
153 |
| - elif isinstance(inpt, torch.Tensor): |
154 |
| - return equalize_image_tensor(inpt) |
155 |
| - else: |
156 |
| - return inpt |
| 129 | + return equalize_image_tensor(inpt) |
157 | 130 |
|
158 | 131 |
|
159 | 132 | invert_image_tensor = _FT.invert
|
160 | 133 | invert_image_pil = _FP.invert
|
161 | 134 |
|
162 | 135 |
|
163 |
| -def invert(inpt: Any) -> Any: |
| 136 | +def invert(inpt: DType) -> DType: |
164 | 137 | if isinstance(inpt, features._Feature):
|
165 | 138 | return inpt.invert()
|
166 |
| - elif isinstance(inpt, PIL.Image.Image): |
| 139 | + if isinstance(inpt, PIL.Image.Image): |
167 | 140 | return invert_image_pil(inpt)
|
168 |
| - elif isinstance(inpt, torch.Tensor): |
169 |
| - return invert_image_tensor(inpt) |
170 |
| - else: |
171 |
| - return inpt |
| 141 | + return invert_image_tensor(inpt) |
0 commit comments