|
| 1 | +import csv |
| 2 | +import io |
| 3 | +from typing import Any, Callable, Dict, List, Optional, Tuple, Mapping, Union |
| 4 | + |
| 5 | +import torch |
| 6 | +from torch.utils.data import IterDataPipe |
| 7 | +from torch.utils.data.datapipes.iter import ( |
| 8 | + Mapper, |
| 9 | + Shuffler, |
| 10 | + Filter, |
| 11 | + ZipArchiveReader, |
| 12 | + Zipper, |
| 13 | +) |
| 14 | +from torchdata.datapipes.iter import KeyZipper |
| 15 | +from torchvision.prototype.datasets.utils import ( |
| 16 | + Dataset, |
| 17 | + DatasetConfig, |
| 18 | + DatasetInfo, |
| 19 | + GDriveResource, |
| 20 | + OnlineResource, |
| 21 | + DatasetType, |
| 22 | +) |
| 23 | +from torchvision.prototype.datasets.utils._internal import INFINITE_BUFFER_SIZE, getitem, path_accessor |
| 24 | + |
| 25 | + |
| 26 | +class CelebACSVParser(IterDataPipe): |
| 27 | + def __init__( |
| 28 | + self, |
| 29 | + datapipe, |
| 30 | + *, |
| 31 | + has_header, |
| 32 | + ): |
| 33 | + self.datapipe = datapipe |
| 34 | + self.has_header = has_header |
| 35 | + self._fmtparams = dict(delimiter=" ", skipinitialspace=True) |
| 36 | + |
| 37 | + def __iter__(self): |
| 38 | + for _, file in self.datapipe: |
| 39 | + file = (line.decode() for line in file) |
| 40 | + |
| 41 | + if self.has_header: |
| 42 | + # The first row is skipped, because it only contains the number of samples |
| 43 | + next(file) |
| 44 | + |
| 45 | + # Empty field names are filtered out, because some files have an extr white space after the header |
| 46 | + # line, which is recognized as extra column |
| 47 | + fieldnames = [name for name in next(csv.reader([next(file)], **self._fmtparams)) if name] |
| 48 | + # Some files do not include a label for the image ID column |
| 49 | + if fieldnames[0] != "image_id": |
| 50 | + fieldnames.insert(0, "image_id") |
| 51 | + |
| 52 | + for line in csv.DictReader(file, fieldnames=fieldnames, **self._fmtparams): |
| 53 | + yield line.pop("image_id"), line |
| 54 | + else: |
| 55 | + for line in csv.reader(file, **self._fmtparams): |
| 56 | + yield line[0], line[1:] |
| 57 | + |
| 58 | + |
| 59 | +class CelebA(Dataset): |
| 60 | + @property |
| 61 | + def info(self) -> DatasetInfo: |
| 62 | + return DatasetInfo( |
| 63 | + "celeba", |
| 64 | + type=DatasetType.IMAGE, |
| 65 | + homepage="https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html", |
| 66 | + ) |
| 67 | + |
| 68 | + def resources(self, config: DatasetConfig) -> List[OnlineResource]: |
| 69 | + splits = GDriveResource( |
| 70 | + "0B7EVK8r0v71pY0NSMzRuSXJEVkk", |
| 71 | + sha256="fc955bcb3ef8fbdf7d5640d9a8693a8431b5f2ee291a5c1449a1549e7e073fe7", |
| 72 | + file_name="list_eval_partition.txt", |
| 73 | + ) |
| 74 | + images = GDriveResource( |
| 75 | + "0B7EVK8r0v71pZjFTYXZWM3FlRnM", |
| 76 | + sha256="46fb89443c578308acf364d7d379fe1b9efb793042c0af734b6112e4fd3a8c74", |
| 77 | + file_name="img_align_celeba.zip", |
| 78 | + ) |
| 79 | + identities = GDriveResource( |
| 80 | + "1_ee_0u7vcNLOfNLegJRHmolfH5ICW-XS", |
| 81 | + sha256="c6143857c3e2630ac2da9f782e9c1232e5e59be993a9d44e8a7916c78a6158c0", |
| 82 | + file_name="identity_CelebA.txt", |
| 83 | + ) |
| 84 | + attributes = GDriveResource( |
| 85 | + "0B7EVK8r0v71pblRyaVFSWGxPY0U", |
| 86 | + sha256="f0e5da289d5ccf75ffe8811132694922b60f2af59256ed362afa03fefba324d0", |
| 87 | + file_name="list_attr_celeba.txt", |
| 88 | + ) |
| 89 | + bboxes = GDriveResource( |
| 90 | + "0B7EVK8r0v71pbThiMVRxWXZ4dU0", |
| 91 | + sha256="7487a82e57c4bb956c5445ae2df4a91ffa717e903c5fa22874ede0820c8ec41b", |
| 92 | + file_name="list_bbox_celeba.txt", |
| 93 | + ) |
| 94 | + landmarks = GDriveResource( |
| 95 | + "0B7EVK8r0v71pd0FJY3Blby1HUTQ", |
| 96 | + sha256="6c02a87569907f6db2ba99019085697596730e8129f67a3d61659f198c48d43b", |
| 97 | + file_name="list_landmarks_align_celeba.txt", |
| 98 | + ) |
| 99 | + return [splits, images, identities, attributes, bboxes, landmarks] |
| 100 | + |
| 101 | + _SPLIT_ID_TO_NAME = { |
| 102 | + "0": "train", |
| 103 | + "1": "valid", |
| 104 | + "2": "test", |
| 105 | + } |
| 106 | + |
| 107 | + def _filter_split(self, data: Tuple[str, str], *, split): |
| 108 | + _, split_id = data |
| 109 | + return self._SPLIT_ID_TO_NAME[split_id[0]] == split |
| 110 | + |
| 111 | + def _collate_anns( |
| 112 | + self, data: Tuple[Tuple[str, Union[List[str], Mapping[str, str]]], ...] |
| 113 | + ) -> Tuple[str, Dict[str, Union[List[str], Mapping[str, str]]]]: |
| 114 | + (image_id, identity), (_, attributes), (_, bbox), (_, landmarks) = data |
| 115 | + return image_id, dict(identity=identity, attributes=attributes, bbox=bbox, landmarks=landmarks) |
| 116 | + |
| 117 | + def _collate_and_decode_sample( |
| 118 | + self, |
| 119 | + data: Tuple[Tuple[str, Tuple[str, List[str]], Tuple[str, io.IOBase]], Tuple[str, Dict[str, Any]]], |
| 120 | + *, |
| 121 | + decoder: Optional[Callable[[io.IOBase], torch.Tensor]], |
| 122 | + ) -> Dict[str, Any]: |
| 123 | + split_and_image_data, ann_data = data |
| 124 | + _, _, image_data = split_and_image_data |
| 125 | + path, buffer = image_data |
| 126 | + _, ann = ann_data |
| 127 | + |
| 128 | + image = decoder(buffer) if decoder else buffer |
| 129 | + |
| 130 | + identity = torch.tensor(int(ann["identity"][0])) |
| 131 | + attributes = {attr: value == "1" for attr, value in ann["attributes"].items()} |
| 132 | + bbox = torch.tensor([int(ann["bbox"][key]) for key in ("x_1", "y_1", "width", "height")]) |
| 133 | + landmarks = { |
| 134 | + landmark: torch.tensor((int(ann["landmarks"][f"{landmark}_x"]), int(ann["landmarks"][f"{landmark}_y"]))) |
| 135 | + for landmark in {key[:-2] for key in ann["landmarks"].keys()} |
| 136 | + } |
| 137 | + |
| 138 | + return dict( |
| 139 | + path=path, |
| 140 | + image=image, |
| 141 | + identity=identity, |
| 142 | + attributes=attributes, |
| 143 | + bbox=bbox, |
| 144 | + landmarks=landmarks, |
| 145 | + ) |
| 146 | + |
| 147 | + def _make_datapipe( |
| 148 | + self, |
| 149 | + resource_dps: List[IterDataPipe], |
| 150 | + *, |
| 151 | + config: DatasetConfig, |
| 152 | + decoder: Optional[Callable[[io.IOBase], torch.Tensor]], |
| 153 | + ) -> IterDataPipe[Dict[str, Any]]: |
| 154 | + splits_dp, images_dp, identities_dp, attributes_dp, bboxes_dp, landmarks_dp = resource_dps |
| 155 | + |
| 156 | + splits_dp = CelebACSVParser(splits_dp, has_header=False) |
| 157 | + splits_dp: IterDataPipe = Filter(splits_dp, self._filter_split, fn_kwargs=dict(split=config.split)) |
| 158 | + splits_dp = Shuffler(splits_dp, buffer_size=INFINITE_BUFFER_SIZE) |
| 159 | + |
| 160 | + images_dp = ZipArchiveReader(images_dp) |
| 161 | + |
| 162 | + anns_dp: IterDataPipe = Zipper( |
| 163 | + *[ |
| 164 | + CelebACSVParser(dp, has_header=has_header) |
| 165 | + for dp, has_header in ( |
| 166 | + (identities_dp, False), |
| 167 | + (attributes_dp, True), |
| 168 | + (bboxes_dp, True), |
| 169 | + (landmarks_dp, True), |
| 170 | + ) |
| 171 | + ] |
| 172 | + ) |
| 173 | + anns_dp: IterDataPipe = Mapper(anns_dp, self._collate_anns) |
| 174 | + |
| 175 | + dp = KeyZipper( |
| 176 | + splits_dp, |
| 177 | + images_dp, |
| 178 | + key_fn=getitem(0), |
| 179 | + ref_key_fn=path_accessor("name"), |
| 180 | + buffer_size=INFINITE_BUFFER_SIZE, |
| 181 | + keep_key=True, |
| 182 | + ) |
| 183 | + dp = KeyZipper(dp, anns_dp, key_fn=getitem(0), buffer_size=INFINITE_BUFFER_SIZE) |
| 184 | + return Mapper(dp, self._collate_and_decode_sample, fn_kwargs=dict(decoder=decoder)) |
0 commit comments