|
| 1 | +import warnings |
| 2 | +from functools import partial |
| 3 | +from typing import Any, List, Optional, Union |
| 4 | + |
| 5 | +from torchvision.transforms.functional import InterpolationMode |
| 6 | + |
| 7 | +from ....models.quantization.shufflenetv2 import ( |
| 8 | + QuantizableShuffleNetV2, |
| 9 | + _replace_relu, |
| 10 | + quantize_model, |
| 11 | +) |
| 12 | +from ...transforms.presets import ImageNetEval |
| 13 | +from .._api import Weights, WeightEntry |
| 14 | +from .._meta import _IMAGENET_CATEGORIES |
| 15 | +from ..shufflenetv2 import ShuffleNetV2_x0_5Weights, ShuffleNetV2_x1_0Weights |
| 16 | + |
| 17 | + |
| 18 | +__all__ = [ |
| 19 | + "QuantizableShuffleNetV2", |
| 20 | + "QuantizedShuffleNetV2_x0_5Weights", |
| 21 | + "QuantizedShuffleNetV2_x1_0Weights", |
| 22 | + "shufflenet_v2_x0_5", |
| 23 | + "shufflenet_v2_x1_0", |
| 24 | +] |
| 25 | + |
| 26 | + |
| 27 | +def _shufflenetv2( |
| 28 | + stages_repeats: List[int], |
| 29 | + stages_out_channels: List[int], |
| 30 | + weights: Optional[Weights], |
| 31 | + progress: bool, |
| 32 | + quantize: bool, |
| 33 | + **kwargs: Any, |
| 34 | +) -> QuantizableShuffleNetV2: |
| 35 | + if weights is not None: |
| 36 | + kwargs["num_classes"] = len(weights.meta["categories"]) |
| 37 | + if "backend" in weights.meta: |
| 38 | + kwargs["backend"] = weights.meta["backend"] |
| 39 | + backend = kwargs.pop("backend", "fbgemm") |
| 40 | + |
| 41 | + model = QuantizableShuffleNetV2(stages_repeats, stages_out_channels, **kwargs) |
| 42 | + _replace_relu(model) |
| 43 | + if quantize: |
| 44 | + quantize_model(model, backend) |
| 45 | + |
| 46 | + if weights is not None: |
| 47 | + model.load_state_dict(weights.state_dict(progress=progress)) |
| 48 | + |
| 49 | + return model |
| 50 | + |
| 51 | + |
| 52 | +_common_meta = { |
| 53 | + "size": (224, 224), |
| 54 | + "categories": _IMAGENET_CATEGORIES, |
| 55 | + "interpolation": InterpolationMode.BILINEAR, |
| 56 | + "backend": "fbgemm", |
| 57 | + "quantization": "ptq", |
| 58 | + "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", |
| 59 | +} |
| 60 | + |
| 61 | + |
| 62 | +class QuantizedShuffleNetV2_x0_5Weights(Weights): |
| 63 | + ImageNet1K_FBGEMM_Community = WeightEntry( |
| 64 | + url="https://download.pytorch.org/models/quantized/shufflenetv2_x0.5_fbgemm-00845098.pth", |
| 65 | + transforms=partial(ImageNetEval, crop_size=224), |
| 66 | + meta={ |
| 67 | + **_common_meta, |
| 68 | + "unquantized": ShuffleNetV2_x0_5Weights.ImageNet1K_Community, |
| 69 | + "acc@1": 57.972, |
| 70 | + "acc@5": 79.780, |
| 71 | + }, |
| 72 | + ) |
| 73 | + |
| 74 | + |
| 75 | +class QuantizedShuffleNetV2_x1_0Weights(Weights): |
| 76 | + ImageNet1K_FBGEMM_Community = WeightEntry( |
| 77 | + url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-db332c57.pth", |
| 78 | + transforms=partial(ImageNetEval, crop_size=224), |
| 79 | + meta={ |
| 80 | + **_common_meta, |
| 81 | + "unquantized": ShuffleNetV2_x1_0Weights.ImageNet1K_Community, |
| 82 | + "acc@1": 68.360, |
| 83 | + "acc@5": 87.582, |
| 84 | + }, |
| 85 | + ) |
| 86 | + |
| 87 | + |
| 88 | +def shufflenet_v2_x0_5( |
| 89 | + weights: Optional[Union[QuantizedShuffleNetV2_x0_5Weights, ShuffleNetV2_x0_5Weights]] = None, |
| 90 | + progress: bool = True, |
| 91 | + quantize: bool = False, |
| 92 | + **kwargs: Any, |
| 93 | +) -> QuantizableShuffleNetV2: |
| 94 | + if "pretrained" in kwargs: |
| 95 | + warnings.warn("The argument pretrained is deprecated, please use weights instead.") |
| 96 | + if kwargs.pop("pretrained"): |
| 97 | + weights = ( |
| 98 | + QuantizedShuffleNetV2_x0_5Weights.ImageNet1K_FBGEMM_Community |
| 99 | + if quantize |
| 100 | + else ShuffleNetV2_x0_5Weights.ImageNet1K_Community |
| 101 | + ) |
| 102 | + else: |
| 103 | + weights = None |
| 104 | + |
| 105 | + if quantize: |
| 106 | + weights = QuantizedShuffleNetV2_x0_5Weights.verify(weights) |
| 107 | + else: |
| 108 | + weights = ShuffleNetV2_x0_5Weights.verify(weights) |
| 109 | + |
| 110 | + return _shufflenetv2([4, 8, 4], [24, 48, 96, 192, 1024], weights, progress, quantize, **kwargs) |
| 111 | + |
| 112 | + |
| 113 | +def shufflenet_v2_x1_0( |
| 114 | + weights: Optional[Union[QuantizedShuffleNetV2_x1_0Weights, ShuffleNetV2_x1_0Weights]] = None, |
| 115 | + progress: bool = True, |
| 116 | + quantize: bool = False, |
| 117 | + **kwargs: Any, |
| 118 | +) -> QuantizableShuffleNetV2: |
| 119 | + if "pretrained" in kwargs: |
| 120 | + warnings.warn("The argument pretrained is deprecated, please use weights instead.") |
| 121 | + if kwargs.pop("pretrained"): |
| 122 | + weights = ( |
| 123 | + QuantizedShuffleNetV2_x1_0Weights.ImageNet1K_FBGEMM_Community |
| 124 | + if quantize |
| 125 | + else ShuffleNetV2_x1_0Weights.ImageNet1K_Community |
| 126 | + ) |
| 127 | + else: |
| 128 | + weights = None |
| 129 | + |
| 130 | + if quantize: |
| 131 | + weights = QuantizedShuffleNetV2_x1_0Weights.verify(weights) |
| 132 | + else: |
| 133 | + weights = ShuffleNetV2_x1_0Weights.verify(weights) |
| 134 | + |
| 135 | + return _shufflenetv2([4, 8, 4], [24, 116, 232, 464, 1024], weights, progress, quantize, **kwargs) |
0 commit comments