|
13 | 13 |
|
14 | 14 | import torchvision.prototype.transforms.utils
|
15 | 15 | from common_utils import cache, cpu_and_gpu, needs_cuda, set_rng_seed
|
16 |
| -from prototype_common_utils import assert_close, make_bounding_boxes, make_image, parametrized_error_message |
| 16 | +from prototype_common_utils import assert_close, make_bounding_boxes, parametrized_error_message |
17 | 17 | from prototype_transforms_dispatcher_infos import DISPATCHER_INFOS
|
18 | 18 | from prototype_transforms_kernel_infos import KERNEL_INFOS
|
19 | 19 | from torch.utils._pytree import tree_map
|
@@ -1185,18 +1185,6 @@ def test_correctness_gaussian_blur_image_tensor(device, spatial_size, dt, ksize,
|
1185 | 1185 | torch.testing.assert_close(out, true_out, rtol=0.0, atol=1.0, msg=f"{ksize}, {sigma}")
|
1186 | 1186 |
|
1187 | 1187 |
|
1188 |
| -def test_normalize_output_type(): |
1189 |
| - inpt = torch.rand(1, 3, 32, 32) |
1190 |
| - output = F.normalize(inpt, mean=[0.5, 0.5, 0.5], std=[1.0, 1.0, 1.0]) |
1191 |
| - assert type(output) is torch.Tensor |
1192 |
| - torch.testing.assert_close(inpt - 0.5, output) |
1193 |
| - |
1194 |
| - inpt = make_image(color_space=datapoints.ColorSpace.RGB) |
1195 |
| - output = F.normalize(inpt, mean=[0.5, 0.5, 0.5], std=[1.0, 1.0, 1.0]) |
1196 |
| - assert type(output) is torch.Tensor |
1197 |
| - torch.testing.assert_close(inpt - 0.5, output) |
1198 |
| - |
1199 |
| - |
1200 | 1188 | @pytest.mark.parametrize(
|
1201 | 1189 | "inpt",
|
1202 | 1190 | [
|
|
0 commit comments