@@ -206,9 +206,6 @@ def inject_fake_data(self, tmpdir, config):
206
206
207
207
return num_images_per_category * len (categories )
208
208
209
- def test_transforms_v2_wrapper (self ):
210
- datasets_utils .check_transforms_v2_wrapper (self )
211
-
212
209
213
210
class WIDERFaceTestCase (datasets_utils .ImageDatasetTestCase ):
214
211
DATASET_CLASS = datasets .WIDERFace
@@ -486,9 +483,6 @@ def test_class_to_idx(self):
486
483
actual = dataset .class_to_idx
487
484
assert actual == expected
488
485
489
- def test_transforms_v2_wrapper (self ):
490
- datasets_utils .check_transforms_v2_wrapper (self )
491
-
492
486
493
487
class CIFAR100 (CIFAR10TestCase ):
494
488
DATASET_CLASS = datasets .CIFAR100
@@ -503,9 +497,6 @@ class CIFAR100(CIFAR10TestCase):
503
497
categories_key = "fine_label_names" ,
504
498
)
505
499
506
- def test_transforms_v2_wrapper (self ):
507
- datasets_utils .check_transforms_v2_wrapper (self )
508
-
509
500
510
501
class CelebATestCase (datasets_utils .ImageDatasetTestCase ):
511
502
DATASET_CLASS = datasets .CelebA
@@ -901,9 +892,6 @@ def _create_annotation_file(self, root, name, video_files):
901
892
with open (pathlib .Path (root ) / name , "w" ) as fh :
902
893
fh .writelines (f"{ str (file ).replace (os .sep , '/' )} \n " for file in sorted (video_files ))
903
894
904
- def test_transforms_v2_wrapper (self ):
905
- datasets_utils .check_transforms_v2_wrapper (self , config = dict (output_format = "TCHW" ))
906
-
907
895
908
896
class LSUNTestCase (datasets_utils .ImageDatasetTestCase ):
909
897
DATASET_CLASS = datasets .LSUN
@@ -1073,9 +1061,6 @@ def _create_split_files(self, root, video_files, fold, train):
1073
1061
1074
1062
return num_train_videos if train else (num_videos - num_train_videos )
1075
1063
1076
- def test_transforms_v2_wrapper (self ):
1077
- datasets_utils .check_transforms_v2_wrapper (self , config = dict (output_format = "TCHW" ))
1078
-
1079
1064
1080
1065
class OmniglotTestCase (datasets_utils .ImageDatasetTestCase ):
1081
1066
DATASET_CLASS = datasets .Omniglot
@@ -1487,9 +1472,6 @@ def _magic(self, dtype, dims):
1487
1472
def _encode (self , v ):
1488
1473
return torch .tensor (v , dtype = torch .int32 ).numpy ().tobytes ()[::- 1 ]
1489
1474
1490
- def test_transforms_v2_wrapper (self ):
1491
- datasets_utils .check_transforms_v2_wrapper (self )
1492
-
1493
1475
1494
1476
class FashionMNISTTestCase (MNISTTestCase ):
1495
1477
DATASET_CLASS = datasets .FashionMNIST
@@ -1641,9 +1623,6 @@ def test_classes(self, config):
1641
1623
assert len (dataset .classes ) == len (info ["classes" ])
1642
1624
assert all ([a == b for a , b in zip (dataset .classes , info ["classes" ])])
1643
1625
1644
- def test_transforms_v2_wrapper (self ):
1645
- datasets_utils .check_transforms_v2_wrapper (self )
1646
-
1647
1626
1648
1627
class ImageFolderTestCase (datasets_utils .ImageDatasetTestCase ):
1649
1628
DATASET_CLASS = datasets .ImageFolder
@@ -1665,9 +1644,6 @@ def test_classes(self, config):
1665
1644
assert len (dataset .classes ) == len (info ["classes" ])
1666
1645
assert all ([a == b for a , b in zip (dataset .classes , info ["classes" ])])
1667
1646
1668
- def test_transforms_v2_wrapper (self ):
1669
- datasets_utils .check_transforms_v2_wrapper (self )
1670
-
1671
1647
1672
1648
class KittiTestCase (datasets_utils .ImageDatasetTestCase ):
1673
1649
DATASET_CLASS = datasets .Kitti
0 commit comments