@@ -738,17 +738,28 @@ def resnext101_32x8d(
738
738
def wide_resnet50_2 (
739
739
* , weights : Optional [Wide_ResNet50_2_Weights ] = None , progress : bool = True , ** kwargs : Any
740
740
) -> ResNet :
741
- r """Wide ResNet-50-2 model from
742
- `" Wide Residual Networks" <https://arxiv.org/pdf /1605.07146.pdf >`_.
741
+ """Wide ResNet-50-2 model from
742
+ `Wide Residual Networks <https://arxiv.org/abs /1605.07146>`_.
743
743
744
744
The model is the same as ResNet except for the bottleneck number of channels
745
745
which is twice larger in every block. The number of channels in outer 1x1
746
746
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
747
747
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
748
748
749
749
Args:
750
- weights (Wide_ResNet50_2_Weights, optional): The pretrained weights for the model
751
- progress (bool): If True, displays a progress bar of the download to stderr
750
+ weights (:class:`~torchvision.models.Wide_ResNet50_2_Weights`, optional): The
751
+ pretrained weights to use. See
752
+ :class:`~torchvision.models.Wide_ResNet50_2_Weights` below for
753
+ more details, and possible values. By default, no pre-trained
754
+ weights are used.
755
+ progress (bool, optional): If True, displays a progress bar of the
756
+ download to stderr. Default is True.
757
+ **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
758
+ base class. Please refer to the `source code
759
+ <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
760
+ for more details about this class.
761
+ .. autoclass:: torchvision.models.Wide_ResNet50_2_Weights
762
+ :members:
752
763
"""
753
764
weights = Wide_ResNet50_2_Weights .verify (weights )
754
765
@@ -760,17 +771,28 @@ def wide_resnet50_2(
760
771
def wide_resnet101_2 (
761
772
* , weights : Optional [Wide_ResNet101_2_Weights ] = None , progress : bool = True , ** kwargs : Any
762
773
) -> ResNet :
763
- r """Wide ResNet-101-2 model from
764
- `" Wide Residual Networks" <https://arxiv.org/pdf /1605.07146.pdf >`_.
774
+ """Wide ResNet-101-2 model from
775
+ `Wide Residual Networks <https://arxiv.org/abs /1605.07146>`_.
765
776
766
777
The model is the same as ResNet except for the bottleneck number of channels
767
778
which is twice larger in every block. The number of channels in outer 1x1
768
779
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
769
780
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
770
781
771
782
Args:
772
- weights (Wide_ResNet101_2_Weights, optional): The pretrained weights for the model
773
- progress (bool): If True, displays a progress bar of the download to stderr
783
+ weights (:class:`~torchvision.models.Wide_ResNet101_2_Weights`, optional): The
784
+ pretrained weights to use. See
785
+ :class:`~torchvision.models.Wide_ResNet101_2_Weights` below for
786
+ more details, and possible values. By default, no pre-trained
787
+ weights are used.
788
+ progress (bool, optional): If True, displays a progress bar of the
789
+ download to stderr. Default is True.
790
+ **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
791
+ base class. Please refer to the `source code
792
+ <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
793
+ for more details about this class.
794
+ .. autoclass:: torchvision.models.Wide_ResNet101_2_Weights
795
+ :members:
774
796
"""
775
797
weights = Wide_ResNet101_2_Weights .verify (weights )
776
798
0 commit comments