Skip to content

pyav 14.0.0 breaks write_video #8779

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
raphaelschwinger opened this issue Dec 4, 2024 · 6 comments
Open

pyav 14.0.0 breaks write_video #8779

raphaelschwinger opened this issue Dec 4, 2024 · 6 comments

Comments

@raphaelschwinger
Copy link

🐛 Describe the bug

import torch
import torchvision

# Example dummy video tensor
video = torch.randint(0, 255, (30, 720, 1280, 3), dtype=torch.uint8)  # 30 frames of 720p video

# Write the video
torchvision.io.write_video("test_video.mp4", video, fps=30, video_codec="h264")

Outputs:

File av/video/frame.pyx:193, in av.video.frame.VideoFrame.pict_type.__set__()

TypeError: an integer is required

Versions

Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.7.99
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A100 80GB PCIe
GPU 1: NVIDIA A100 80GB PCIe
GPU 2: NVIDIA A100 80GB PCIe
GPU 3: NVIDIA A100 80GB PCIe

Nvidia driver version: 550.120
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               32
On-line CPU(s) list:                  0-31
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 72F3 8-Core Processor
CPU family:                           25
Model:                                1
Thread(s) per core:                   2
Core(s) per socket:                   8
Socket(s):                            2
Stepping:                             1
Frequency boost:                      enabled
CPU max MHz:                          4137.2070
CPU min MHz:                          1500.0000
BogoMIPS:                             7399.76
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca
Virtualization:                       AMD-V
L1d cache:                            512 KiB (16 instances)
L1i cache:                            512 KiB (16 instances)
L2 cache:                             8 MiB (16 instances)
L3 cache:                             512 MiB (16 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-7,16-23
NUMA node1 CPU(s):                    8-15,24-31
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Mitigation; safe RET
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==2.1.3
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pytorch-lightning==2.4.0
[pip3] torch==2.5.1
[pip3] torchmetrics==1.6.0
[pip3] torchrl==0.6.0
[pip3] torchvision==0.20.1
[pip3] triton==3.1.0
[conda] Could not collect
python = "^3.10"
torch = "^2.5.1"
torchvision = "^0.20.1"
lightning = "^2.4.0"
torchmetrics = "^1.5.1"
hydra-core = "^1.3.2"
hydra-colorlog = "^1.2.0"
hydra-optuna-sweeper = "^1.2.0"
rootutils = "^1.0.7"
pre-commit = "^4.0.1"
rich = "^13.9.4"
pytest = "^8.3.3"
torchrl = "^0.6.0"
tensordict = "^0.6.2"
ipykernel = "^6.29.5"
gymnasium = {extras = ["atari"], version = "<1.0.0"}
pygame = "^2.6.1"
av = "^14.0.0"

ffmpeg version 4.4.2-0ubuntu0.22.04.1

Downgrading to 13.1.0 solves the problem.

@raphaelschwinger
Copy link
Author

See PyAV-Org/PyAV#1666

@NicolasHug
Copy link
Member

Thanks for the report @raphaelschwinger .

Indeed pyav made some backward-incompatible changes with pyav 14. I have made the necessary changes to torchvision in #8776, and they will be available with the next release. Until then, users will need to pin pyav to < 14 for it to work.

@raphaelschwinger
Copy link
Author

@NicolasHug Thanks!

@refill-dn
Copy link

refill-dn commented Dec 12, 2024

I have same case.
I was fix torchvision/io/video.py

image

@hiyyg
Copy link

hiyyg commented Dec 23, 2024

Is there any update on how to fix this issue more elegantly?

@refill
Copy link

refill commented Dec 24, 2024

I think this issue was already patched.

see vision/torchvision/io/video.py line 160

...
for img in video_array:
frame = av.VideoFrame.from_ndarray(img, format="rgb24")
try:
frame.pict_type = "NONE"
except TypeError:
from av.video.frame import PictureType # noqa

            frame.pict_type = PictureType.NONE

...

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants