diff --git a/mypy.ini b/mypy.ini index 040b52dfda4..5cfd4056ba0 100644 --- a/mypy.ini +++ b/mypy.ini @@ -28,7 +28,15 @@ ignore_errors = True ignore_errors = True -[mypy-torchvision.transforms.*] +[mypy-torchvision.transforms.functional.*] + +ignore_errors = True + +[mypy-torchvision.transforms.transforms.*] + +ignore_errors = True + +[mypy-torchvision.transforms.autoaugment.*] ignore_errors = True diff --git a/torchvision/transforms/functional_tensor.py b/torchvision/transforms/functional_tensor.py index 5a13bd5d392..3e4069bb0c0 100644 --- a/torchvision/transforms/functional_tensor.py +++ b/torchvision/transforms/functional_tensor.py @@ -11,7 +11,7 @@ def _is_tensor_a_torch_image(x: Tensor) -> bool: return x.ndim >= 2 -def _assert_image_tensor(img): +def _assert_image_tensor(img: Tensor) -> None: if not _is_tensor_a_torch_image(img): raise TypeError("Tensor is not a torch image.") @@ -317,7 +317,7 @@ def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor: return (ratio * img1 + (1.0 - ratio) * img2).clamp(0, bound).to(img1.dtype) -def _rgb2hsv(img): +def _rgb2hsv(img: Tensor) -> Tensor: r, g, b = img.unbind(dim=-3) # Implementation is based on https://github.com/python-pillow/Pillow/blob/4174d4267616897df3746d315d5a2d0f82c656ee/ @@ -356,7 +356,7 @@ def _rgb2hsv(img): return torch.stack((h, s, maxc), dim=-3) -def _hsv2rgb(img): +def _hsv2rgb(img: Tensor) -> Tensor: h, s, v = img.unbind(dim=-3) i = torch.floor(h * 6.0) f = (h * 6.0) - i @@ -388,15 +388,15 @@ def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor: in_sizes = img.size() - x_indices = [i for i in range(in_sizes[-1])] # [0, 1, 2, 3, ...] + _x_indices = [i for i in range(in_sizes[-1])] # [0, 1, 2, 3, ...] left_indices = [i for i in range(padding[0] - 1, -1, -1)] # e.g. [3, 2, 1, 0] right_indices = [-(i + 1) for i in range(padding[1])] # e.g. [-1, -2, -3] - x_indices = torch.tensor(left_indices + x_indices + right_indices, device=img.device) + x_indices = torch.tensor(left_indices + _x_indices + right_indices, device=img.device) - y_indices = [i for i in range(in_sizes[-2])] + _y_indices = [i for i in range(in_sizes[-2])] top_indices = [i for i in range(padding[2] - 1, -1, -1)] bottom_indices = [-(i + 1) for i in range(padding[3])] - y_indices = torch.tensor(top_indices + y_indices + bottom_indices, device=img.device) + y_indices = torch.tensor(top_indices + _y_indices + bottom_indices, device=img.device) ndim = img.ndim if ndim == 3: @@ -560,13 +560,13 @@ def resize( def _assert_grid_transform_inputs( - img: Tensor, - matrix: Optional[List[float]], - interpolation: str, - fill: Optional[List[float]], - supported_interpolation_modes: List[str], - coeffs: Optional[List[float]] = None, -): + img: Tensor, + matrix: Optional[List[float]], + interpolation: str, + fill: Optional[List[float]], + supported_interpolation_modes: List[str], + coeffs: Optional[List[float]] = None, +) -> None: if not (isinstance(img, torch.Tensor)): raise TypeError("Input img should be Tensor") @@ -612,7 +612,7 @@ def _cast_squeeze_in(img: Tensor, req_dtypes: List[torch.dtype]) -> Tuple[Tensor return img, need_cast, need_squeeze, out_dtype -def _cast_squeeze_out(img: Tensor, need_cast: bool, need_squeeze: bool, out_dtype: torch.dtype): +def _cast_squeeze_out(img: Tensor, need_cast: bool, need_squeeze: bool, out_dtype: torch.dtype) -> Tensor: if need_squeeze: img = img.squeeze(dim=0) @@ -732,7 +732,7 @@ def rotate( return _apply_grid_transform(img, grid, interpolation, fill=fill) -def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device): +def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> Tensor: # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/ # src/libImaging/Geometry.c#L394 @@ -922,7 +922,7 @@ def autocontrast(img: Tensor) -> Tensor: return ((img - minimum) * scale).clamp(0, bound).to(img.dtype) -def _scale_channel(img_chan): +def _scale_channel(img_chan: Tensor) -> Tensor: # TODO: we should expect bincount to always be faster than histc, but this # isn't always the case. Once # https://github.com/pytorch/pytorch/issues/53194 is fixed, remove the if