diff --git a/torchvision/prototype/features/_bounding_box.py b/torchvision/prototype/features/_bounding_box.py index 13dcdb4b742..699afd0b25c 100644 --- a/torchvision/prototype/features/_bounding_box.py +++ b/torchvision/prototype/features/_bounding_box.py @@ -78,7 +78,7 @@ def resize( # type: ignore[override] size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, max_size: Optional[int] = None, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> BoundingBox: output, spatial_size = self._F.resize_bounding_box( self.as_subclass(torch.Tensor), spatial_size=self.spatial_size, size=size, max_size=max_size @@ -105,7 +105,7 @@ def resized_crop( width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> BoundingBox: output, spatial_size = self._F.resized_crop_bounding_box( self.as_subclass(torch.Tensor), self.format, top, left, height, width, size=size diff --git a/torchvision/prototype/features/_feature.py b/torchvision/prototype/features/_feature.py index 9893e24d751..fc289485c3a 100644 --- a/torchvision/prototype/features/_feature.py +++ b/torchvision/prototype/features/_feature.py @@ -164,7 +164,7 @@ def resize( # type: ignore[override] size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, max_size: Optional[int] = None, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> _Feature: return self @@ -182,7 +182,7 @@ def resized_crop( width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> _Feature: return self diff --git a/torchvision/prototype/features/_image.py b/torchvision/prototype/features/_image.py index 1e9c4623d93..5ed1073050b 100644 --- a/torchvision/prototype/features/_image.py +++ b/torchvision/prototype/features/_image.py @@ -123,7 +123,7 @@ def resize( # type: ignore[override] size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, max_size: Optional[int] = None, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> Image: output = self._F.resize_image_tensor( self.as_subclass(torch.Tensor), size, interpolation=interpolation, max_size=max_size, antialias=antialias @@ -146,7 +146,7 @@ def resized_crop( width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> Image: output = self._F.resized_crop_image_tensor( self.as_subclass(torch.Tensor), diff --git a/torchvision/prototype/features/_mask.py b/torchvision/prototype/features/_mask.py index 1962a8d64eb..6b021d8ad34 100644 --- a/torchvision/prototype/features/_mask.py +++ b/torchvision/prototype/features/_mask.py @@ -49,7 +49,7 @@ def resize( # type: ignore[override] size: List[int], interpolation: InterpolationMode = InterpolationMode.NEAREST, max_size: Optional[int] = None, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> Mask: output = self._F.resize_mask(self.as_subclass(torch.Tensor), size, max_size=max_size) return Mask.wrap_like(self, output) @@ -70,7 +70,7 @@ def resized_crop( width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.NEAREST, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> Mask: output = self._F.resized_crop_mask(self.as_subclass(torch.Tensor), top, left, height, width, size=size) return Mask.wrap_like(self, output) diff --git a/torchvision/prototype/features/_video.py b/torchvision/prototype/features/_video.py index 0d0961d77be..b1cba6236b6 100644 --- a/torchvision/prototype/features/_video.py +++ b/torchvision/prototype/features/_video.py @@ -79,7 +79,7 @@ def resize( # type: ignore[override] size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, max_size: Optional[int] = None, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> Video: output = self._F.resize_video( self.as_subclass(torch.Tensor), @@ -106,7 +106,7 @@ def resized_crop( width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> Video: output = self._F.resized_crop_video( self.as_subclass(torch.Tensor), diff --git a/torchvision/prototype/transforms/functional/_geometry.py b/torchvision/prototype/transforms/functional/_geometry.py index adf494b1c42..09a9900f052 100644 --- a/torchvision/prototype/transforms/functional/_geometry.py +++ b/torchvision/prototype/transforms/functional/_geometry.py @@ -115,8 +115,9 @@ def resize_image_tensor( size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, max_size: Optional[int] = None, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> torch.Tensor: + antialias = False if antialias is None else antialias align_corners: Optional[bool] = None if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC: align_corners = False @@ -196,7 +197,7 @@ def resize_video( size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, max_size: Optional[int] = None, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> torch.Tensor: return resize_image_tensor(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias) @@ -209,10 +210,8 @@ def resize( antialias: Optional[bool] = None, ) -> features.InputTypeJIT: if isinstance(inpt, torch.Tensor) and (torch.jit.is_scripting() or not isinstance(inpt, features._Feature)): - antialias = False if antialias is None else antialias return resize_image_tensor(inpt, size, interpolation=interpolation, max_size=max_size, antialias=antialias) elif isinstance(inpt, features._Feature): - antialias = False if antialias is None else antialias return inpt.resize(size, interpolation=interpolation, max_size=max_size, antialias=antialias) else: if antialias is not None and not antialias: @@ -1396,7 +1395,7 @@ def resized_crop_image_tensor( width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> torch.Tensor: image = crop_image_tensor(image, top, left, height, width) return resize_image_tensor(image, size, interpolation=interpolation, antialias=antialias) @@ -1449,7 +1448,7 @@ def resized_crop_video( width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR, - antialias: bool = False, + antialias: Optional[bool] = None, ) -> torch.Tensor: return resized_crop_image_tensor( video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation @@ -1467,12 +1466,10 @@ def resized_crop( antialias: Optional[bool] = None, ) -> features.InputTypeJIT: if isinstance(inpt, torch.Tensor) and (torch.jit.is_scripting() or not isinstance(inpt, features._Feature)): - antialias = False if antialias is None else antialias return resized_crop_image_tensor( inpt, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation ) elif isinstance(inpt, features._Feature): - antialias = False if antialias is None else antialias return inpt.resized_crop(top, left, height, width, antialias=antialias, size=size, interpolation=interpolation) else: return resized_crop_image_pil(inpt, top, left, height, width, size=size, interpolation=interpolation)