diff --git a/docs/source/transforms.rst b/docs/source/transforms.rst index 5909b68966b..d831b81e37f 100644 --- a/docs/source/transforms.rst +++ b/docs/source/transforms.rst @@ -14,11 +14,10 @@ transformations. This is useful if you have to build a more complex transformation pipeline (e.g. in the case of segmentation tasks). -Most transformations accept both `PIL `_ -images and tensor images, although some transformations are :ref:`PIL-only -` and some are :ref:`tensor-only -`. The :ref:`conversion_transforms` may be used to -convert to and from PIL images. +Most transformations accept both `PIL `_ images +and tensor images, although some transformations are PIL-only and some are +tensor-only. The :ref:`conversion_transforms` may be used to convert to and from +PIL images, or for converting dtypes and ranges. The transformations that accept tensor images also accept batches of tensor images. A Tensor Image is a tensor with ``(C, H, W)`` shape, where ``C`` is a @@ -70,8 +69,10 @@ The following examples illustrate the use of the available transforms: produce the same results. -Scriptable transforms ---------------------- +Transforms scriptability +------------------------ + +.. TODO: Add note about v2 scriptability (in next PR) In order to script the transformations, please use ``torch.nn.Sequential`` instead of :class:`Compose`. @@ -89,39 +90,36 @@ Make sure to use only scriptable transformations, i.e. that work with ``torch.Te For any custom transformations to be used with ``torch.jit.script``, they should be derived from ``torch.nn.Module``. -Compositions of transforms --------------------------- +Geometry +-------- .. autosummary:: :toctree: generated/ :template: class.rst - Compose - + Resize + RandomCrop + RandomResizedCrop + CenterCrop + FiveCrop + TenCrop + Pad + RandomAffine + RandomPerspective + RandomRotation + RandomHorizontalFlip + RandomVerticalFlip -Transforms on PIL Image and torch.\*Tensor ------------------------------------------- +Color +----- .. autosummary:: :toctree: generated/ :template: class.rst - CenterCrop ColorJitter - FiveCrop Grayscale - Pad - RandomAffine - RandomApply - RandomCrop RandomGrayscale - RandomHorizontalFlip - RandomPerspective - RandomResizedCrop - RandomRotation - RandomVerticalFlip - Resize - TenCrop GaussianBlur RandomInvert RandomPosterize @@ -130,23 +128,20 @@ Transforms on PIL Image and torch.\*Tensor RandomAutocontrast RandomEqualize - -.. _transforms_pil_only: - -Transforms on PIL Image only ----------------------------- +Composition +----------- .. autosummary:: :toctree: generated/ :template: class.rst + Compose + RandomApply RandomChoice RandomOrder -.. _transforms_tensor_only: - -Transforms on torch.\*Tensor only ---------------------------------- +Miscellaneous +------------- .. autosummary:: :toctree: generated/ @@ -155,12 +150,12 @@ Transforms on torch.\*Tensor only LinearTransformation Normalize RandomErasing - ConvertImageDtype + Lambda .. _conversion_transforms: -Conversion Transforms ---------------------- +Conversion +---------- .. autosummary:: :toctree: generated/ @@ -169,20 +164,10 @@ Conversion Transforms ToPILImage ToTensor PILToTensor + ConvertImageDtype - -Generic Transforms ------------------- - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - Lambda - - -Automatic Augmentation Transforms ---------------------------------- +Auto-Augmentation +----------------- `AutoAugment `_ is a common Data Augmentation technique that can improve the accuracy of Image Classification models. Though the data augmentation policies are directly linked to their trained dataset, empirical studies show that