|
4 | 4 | import random
|
5 | 5 | import numpy as np
|
6 | 6 | from collections import deque
|
7 |
| -import tensorflow as tf |
8 | 7 | from keras.layers import Dense
|
9 | 8 | from keras.optimizers import Adam
|
10 | 9 | from keras.models import Sequential
|
|
18 | 17 | class DQNAgent:
|
19 | 18 | def __init__(self, state_size, action_size):
|
20 | 19 | # if you want to see Cartpole learning, then change to True
|
21 |
| - self.render = False |
| 20 | + self.render = True |
22 | 21 |
|
23 | 22 | # get size of state and action
|
24 | 23 | self.state_size = state_size
|
@@ -102,8 +101,6 @@ def train_replay(self):
|
102 | 101 |
|
103 | 102 | # and do the model fit!
|
104 | 103 | self.model.fit(update_input, target, batch_size=self.batch_size, epochs=1, verbose=0)
|
105 |
| - #hist = self.model.fit(update_input, update_target, batch_size=batch_size, epochs=1, verbose=0) |
106 |
| - #self.avg_loss += hist.history['loss'][0] |
107 | 104 |
|
108 | 105 | # load the saved model
|
109 | 106 | def load_model(self, name):
|
@@ -157,7 +154,7 @@ def save_model(self, name):
|
157 | 154 | score = score if score == 500 else score + 100
|
158 | 155 | scores.append(score)
|
159 | 156 | episodes.append(e)
|
160 |
| - pylab.plot(episodes, scores, 'b') |
| 157 | + #pylab.plot(episodes, scores, 'b') |
161 | 158 | # pylab.savefig("./save_graph/Cartpole_DQN.png")
|
162 | 159 | print("episode:", e, " score:", score, " memory length:", len(agent.memory),
|
163 | 160 | " epsilon:", agent.epsilon)
|
|
0 commit comments