Skip to content

Commit fbbb29b

Browse files
committed
update readme and fix more folder and file names
1 parent 807aa0a commit fbbb29b

File tree

9 files changed

+22
-18
lines changed

9 files changed

+22
-18
lines changed
File renamed without changes.
File renamed without changes.

README.md

Lines changed: 22 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
>
77
> Maintainers - [Woongwon](https://github.com/dnddnjs), [Youngmoo](https://github.com/zzing0907), [Hyeokreal](https://github.com/Hyeokreal), [Uiryeong](https://github.com/wooridle), [Keon](https://github.com/keon)
88
9-
From the most basic algorithms to the more recent ones categorized as 'deep reinforcement learning', the examples are easy to read with comments.
9+
From the basics to deep reinforcement learning, this repo provides easy-to-read code examples. One file for each algorithm.
1010
Please feel free to create a [Pull Request](https://github.com/rlcode/reinforcement-learning/pulls), or open an [issue](https://github.com/rlcode/reinforcement-learning/issues)!
1111

1212
## Dependencies
@@ -27,25 +27,29 @@ pip install -r requirements.txt
2727

2828
## Table of Contents
2929

30-
**Code 1** - Mastering the basics of reinforcement learning in the simplified world called "Grid World"
30+
**Basics** - Mastering the basics of reinforcement learning in the simplified world called "Grid World"
3131

32-
- [Policy Iteration](./Code%201.%20Grid%20World/1.%20Policy%20Iteration)
33-
- [Value Iteration](./Code%201.%20Grid%20World/2.%20Value%20Iteration)
34-
- [Monte Carlo](./Code%201.%20Grid%20World/3.%20Monte-Carlo)
35-
- [SARSA](./Code%201.%20Grid%20World/4.%20SARSA)
36-
- [Q-Learning](./Code%201.%20Grid%20World/5.%20Q%20Learning)
37-
- [Deep Q Network](./Code%201.%20Grid%20World/6.%20DQN)
38-
- [Policy Gradient](./Code%201.%20Grid%20World/7.%20Policy%20Gradient)
32+
- [Policy Iteration](./1-grid-world/1-policy-iteration)
33+
- [Value Iteration](./1-grid-world/2-value-iteration)
34+
- [Monte Carlo](./1-grid-world/3-monte-carlo)
35+
- [SARSA](./1-grid-world/4-sarsa)
36+
- [Q-Learning](./1-grid-world/5-q-learning)
37+
- [Deep Q Network](./1-grid-world/6-deep-q-learning)
38+
- [Policy Gradient](./1-grid-world/7-policy-gradient)
3939

40-
**Code 2** - Applying deep reinforcement learning on basic Cartpole game.
40+
**Intermediate** - Applying deep reinforcement learning on basic Cartpole game.
4141

42-
- [Deep Q Network](./Code%202.%20Cartpole/1.%20DQN)
43-
- [Double Deep Q Network](./Code%202.%20Cartpole/2.%20Double%20DQN)
44-
- [Policy Gradient](./Code%202.%20Cartpole/3.%20Policy%20Gradient)
45-
- [Actor Critic (A2C)](./Code%202.%20Cartpole/4.%20Actor-Critic)
46-
- [Asynchronous Advantage Actor Critic (A3C)](./Code%202.%20Cartpole/5.%20A3C)
42+
- [Deep Q Network](./2-cartpole/1-dqn)
43+
- [Double Deep Q Network](./2-cartpole/2-double-dqn)
44+
- [Policy Gradient](./2-cartpole/3-policy-gradient)
45+
- [Actor Critic (A2C)](./2-cartpole/4-actor-critic)
46+
- [Asynchronous Advantage Actor Critic (A3C)](./2-cartpole/5-a3c)
4747

48-
**Code 3** - Mastering Atari games with Deep Reinforcement Learning
48+
**Advanced** - Mastering Atari games with Deep Reinforcement Learning
4949

50-
- [Breakout](./Code%203.%20Atari%20Game/1.%20Breakout) - [DQN](https://github.com/rlcode/reinforcement-learning/tree/master/Code%203.%20Atari%20Game/1.%20Breakout), PG, [A3C](https://github.com/rlcode/reinforcement-learning/tree/master/Code%203.%20Atari%20Game/3.%20A3C)
51-
- [Pong](./Code%203.%20Atari%20Game/2.%20Pong) - DQN, PG, A3C
50+
- **Breakout** - [DQN](./3-atari/1-breakout/breakout_dqn.py), [DDQN](./3-atari/1-breakout/breakout_ddqn.py) [Dueling DDQN](./3-atari/1-breakout/breakout_ddqn.py) [A3C](./3-atari/1-breakout/breakout_a3c.py)
51+
- **Pong** - [Policy Gradient](./3-atari/2-pong/pong_pg.py), [A3C](./3-atari/2-pong/pong-a3c.py)
52+
53+
**ETC** - [WIP]
54+
55+
- Mountain Car - [DQN]()

0 commit comments

Comments
 (0)