
29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 1/19

mdBook
mdBook is a command line tool and Rust crate to create books using Markdow
similar to Gitbook but written in Rust.

What you are reading serves as an example of the output of mdBook and at th
high-level documentation.

mdBook is free and open source, you can �nd the source code on Github. Issue
requests can be posted on the Github Issue tracker.

API docs

Alongside this book you can also read the API docs generated by Rustdoc if you
mdBook as a crate or write a new renderer and need a more low-level overview

License

mdBook, all the source code, is released under the Mozilla Public License v2.0

Command Line Tool
mdBook can be used either as a command line tool or a Rust crate. Let's focus
tool capabilities �rst.

Install

Pre-requisite

mdBook is written in Rust and therefore needs to be compiled with Cargo, bec
o�er ready-to-go binaries. If you haven't already installed Rust, please go ahea

Install Crates.io version

Installing mdBook is relatively easy if you already have Rust and Cargo installed
type this snippet in your terminal:

This will fetch the source code from Crates.io and compile it. You will have to ad
directory to your PATH .

Run mdbook help in your terminal to verify if it works. Congratulations, you ha

Install Git version

The git version contains all the latest bug-�xes and features, that will be releas
on Crates.io, if you can't wait until the next release. You can build the git versio
your terminal and navigate to the directory of you choice. We need to clone the
then build it with Cargo.

The executable mdbook will be in the ./target/release folder, this should be

cargo install mdbook

git clone --depth=1 https://github.com/rust-lang-nursery/mdBook.git
cd mdBook
cargo build --release

http://www.rust-lang.org/
https://github.com/rust-lang-nursery/mdBook
https://github.com/rust-lang-nursery/mdBook/issues
https://docs.rs/mdbook/*/mdbook/
https://www.mozilla.org/MPL/2.0/
https://crates.io/crates/mdbook
https://www.rust-lang.org/
https://crates.io/
https://github.com/rust-lang-nursery/mdBook

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 2/19

The init command
There is some minimal boilerplate that is the same for every new book. It's for
mdBook includes an init command.

The init command is used like this:

When using the init command for the �rst time, a couple of �les will be set u

The src directory is were you write your book in markdown. It contains a
con�guration �les, etc.

The book directory is where your book is rendered. All the output is read
server to be seen by your audience.

The SUMMARY.md �le is the most important �le, it's the skeleton of your bo
in more detail in another chapter.

Tip & Trick: Hidden Feature

When a SUMMARY.md �le already exists, the init command will �rst parse it an
missing �les according to the paths used in the SUMMARY.md . This allows you to
whole structure of your book and then let mdBook generate it for you.

Specify a directory

When using the init command, you can also specify a directory, instead of us
working directory, by appending a path to the command:

--theme

When you use the --theme argument, the default theme will be copied into a d
theme in your source directory so that you can modify it.

The theme is selectively overwritten, this means that if you don't want to overw
delete it and the default �le will be used.

The build command
The build command is used to render your book:

It will try to parse your SUMMARY.md �le to understand the structure of your bo
corresponding �les.

The rendered output will maintain the same directory structure as the source f
books will therefore remain structured when rendered.

Specify a directory

Like init , the build command can take a directory as an argument to use ins
working directory.

mdbook init

book-test/
├── book
└── src
 ├── chapter_1.md
 └── SUMMARY.md

mdbook init path/to/book

mdbook build

file:///home/michael/Documents/forks/mdBook/book-example/book/format/summary.html

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 3/19

--open

When you use the --open (-o) option, mdbook will open the rendered book i
browser after building it.

--dest-dir

The --dest-dir (-d) option allows you to change the output directory for you

note: make sure to run the build command in the root directory and not in the sour

The watch command
The watch command is useful when you want your book to be rendered on ev
could repeatedly issue mdbook build every time a �le is changed. But using md
watch your �les and will trigger a build automatically whenever you modify a �

Specify a directory

Like init and build , watch can take a directory as an argument to use inste
working directory.

--open

When you use the --open (-o) option, mdbook will open the rendered book i
browser.

--dest-dir

The --dest-dir (-d) option allows you to change the output directory for you

note: the watch command has not gotten a lot of testing yet, there could be some
discover a problem, please report it on Github

The serve command
The serve command is useful when you want to preview your book. It also do
the webpage whenever a �le changes. It achieves this by serving the books con
localhost:3000 (unless otherwise con�gured, see below) and runs a websock
localhost:3001 which triggers the reloads. This preferred by many for writing

because it allows for you to see the result of your work instantly after every �le

Specify a directory

Like watch , serve can take a directory as an argument to use instead of the c
directory.

Server options

serve has four options: the http port, the websocket port, the interface to serv
address of the server so that the browser may reach the websocket server.

For example: suppose you had an nginx server for SSL termination which has a
192.168.1.100 on port 80 and proxied that to 127.0.0.1 on port 8000. To run us

mdbook build path/to/book

mdbook watch path/to/book

mdbook serve path/to/book

https://github.com/rust-lang-nursery/mdBook/issues

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 4/19

If you were to want live reloading for this you would need to proxy the websoc
nginx as well from 192.168.1.100:<WS_PORT> to 127.0.0.1:<WS_PORT> . The -
websocket port to be con�gured.

--open

When you use the --open (-o) option, mdbook will open the book in your you
browser after starting the server.

--dest-dir

The --dest-dir (-d) option allows you to change the output directory for you

note: the serve command has not gotten a lot of testing yet, there could be some
discover a problem, please report it on Github

The test command
When writing a book, you sometimes need to automate some tests. For examp
Programming Book uses a lot of code examples that could get outdated. There
important for them to be able to automatically test these code examples.

mdBook supports a test command that will run all available tests in mdBook.
one test is available: "Test Rust code examples using Rustdoc", but I hope this will
future to include more tests like:

checking for broken links
checking for unused �les
...

In the future I would like the user to be able to enable / disable test from the b
con�guration �le and support custom tests.

How to use it:

The clean command
The clean command is used to delete the generated book and any other build a

It will try to delete the built book. If a path is provided, it will be used.

Specify a directory

Like init , the clean command can take a directory as an argument to use ins
build directory.

path/to/book could be absolute or relative.

Format
In this section you will learn how to:

Structure your book correctly
Format your SUMMARY.md �le

mdbook serve path/to/book -p 8000 -i 127.0.0.1 -a 192.168.1.100

$ mdbook test
[*]: Testing file: "/mdBook/book-example/src/README.md”

mdbook clean

mdbook clean --dest-dir=path/to/book

https://github.com/rust-lang-nursery/mdBook/issues
https://doc.rust-lang.org/stable/book/

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 5/19

Con�gure your book using book.toml
Customize your theme

SUMMARY.md
The summary �le is used by mdBook to know what chapters to include, in wha
appear, what their hierarchy is and where the source �les are. Without this �le,

Even though SUMMARY.md is a markdown �le, the formatting is very strict to allo
Let's see how you should format your SUMMARY.md �le.

Allowed elements

1. Title It's common practice to begin with a title, generally # Summary . But
the parser just ignores it. So you can too if you feel like it.

2. Pre�x Chapter Before the main numbered chapters you can add a couple
not be numbered. This is useful for forewords, introductions, etc. There a
constraints. You can not nest pre�x chapters, they should all be on the ro
not add pre�x chapters once you have added numbered chapters.

3. Numbered Chapter Numbered chapters are the main content of the book
numbered and can be nested, resulting in a nice hierarchy (chapters, sub-

You can either use - or * to indicate a numbered chapter.

4. Su�x Chapter After the numbered chapters you can add a couple of non
They are the same as pre�x chapters but come after the numbered chapt

All other elements are unsupported and will be ignored at best or result in an e

Con�guration
You can con�gure the parameters for your book in the book.toml �le.

Here is an example of what a book.toml �le might look like:

Supported con�guration options

It is important to note that any relative path speci�ed in the in the con�guratio
relative from the root of the book where the con�guration �le is located.

General metadata

This is general information about your book.

[Title of prefix element](relative/path/to/markdown.md)

- [Title of the Chapter](relative/path/to/markdown.md)

[book]
title = "Example book"
author = "John Doe"
description = "The example book covers examples."

[build]
build-dir = "my-example-book"
create-missing = false

[output.html]
additional-css = ["custom.css"]

[output.html.search]
limit-results = 15

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 6/19

title: The title of the book
authors: The author(s) of the book
description: A description for the book, which is added as meta informat
<head> of each page

src: By default, the source directory is found in the directory named src
root folder. But this is con�gurable with the src key in the con�guration

book.toml

Build options

This controls the build process of your book.

build-dir: The directory to put the rendered book in. By default this is boo
directory.
create-missing: By default, any missing �les speci�ed in SUMMARY.md will
book is built (i.e. create-missing = true). If this is false then the build
exit with an error if any �les do not exist.

book.toml

HTML renderer options

The HTML renderer has a couple of options as well. All the options for the rend
speci�ed under the TOML table [output.html] .

The following con�guration options are available:

theme: mdBook comes with a default theme and all the resource �les ne
option is set, mdBook will selectively overwrite the theme �les with the on
speci�ed folder.
curly-quotes: Convert straight quotes to curly quotes, except for those th
blocks and code spans. Defaults to false .
google-analytics: If you use Google Analytics, this option lets you enable
your ID in the con�guration �le.
additional-css: If you need to slightly change the appearance of your boo
the whole style, you can specify a set of stylesheets that will be loaded aft
where you can surgically change the style.
additional-js: If you need to add some behaviour to your book without re
behaviour, you can specify a set of JavaScript �les that will be loaded alon
no-section-label: mdBook by defaults adds section label in table of conte
example, "1.", "2.1". Set this option to true to disable those labels. Default
playpen: A subtable for con�guring various playpen settings.
search: A subtable for con�guring the in-browser search functionality. md
compiled with the search feature enabled (on by default).

Available con�guration options for the [output.html.playpen] table:

editable: Allow editing the source code. Defaults to false .
copy-js: Copy JavaScript �les for the editor to the output directory. Defau

Available con�guration options for the [output.html.search] table:

limit-results: The maximum number of search results. Defaults to 30 .
teaser-word-count: The number of words used for a search result teaser
use-boolean-and: De�ne the logical link between multiple search words.
words must appear in each result. Defaults to true .

[book]
title = "Example book"
authors = ["John Doe", "Jane Doe"]
description = "The example book covers examples."
src = "my-src" # the source files will be found in `root/my-src` ins

[build]
build-dir = "build"
create-missing = false

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 7/19

boost-title: Boost factor for the search result score if a search word appe
Defaults to 2 .
boost-hierarchy: Boost factor for the search result score if a search word
hierarchy. The hierarchy contains all titles of the parent documents and a
Defaults to 1 .
boost-paragraph: Boost factor for the search result score if a search wor
Defaults to 1 .
expand: True if search should match longer results e.g. search micro sho
microwave . Defaults to true .

heading-split-level: Search results will link to a section of the document w
result. Documents are split into sections by headings this level or less. De
This is a level 3 heading)

copy-js: Copy JavaScript �les for the search implementation to the output
true .

This shows all available options in the book.toml:

Environment Variables

All con�guration values can be overridden from the command line by setting th
environment variable. Because many operating systems restrict environment v
alphanumeric characters or _ , the con�guration key needs to be formatted sli
normal foo.bar.baz form.

Variables starting with MDBOOK_ are used for con�guration. The key is created b
MDBOOK_ pre�x and turning the resulting string into kebab-case . Double unde

nested keys, while a single underscore (_) is replaced with a dash (-).

For example:

MDBOOK_foo -> foo
MDBOOK_FOO -> foo
MDBOOK_FOO__BAR -> foo.bar
MDBOOK_FOO_BAR -> foo-bar
MDBOOK_FOO_bar__baz -> foo-bar.baz

So by setting the MDBOOK_BOOK__TITLE environment variable you can override
without needing to touch your book.toml .

Note: To facilitate setting more complex con�g items, the value of an enviro
�rst parsed as JSON, falling back to a string if the parse fails.

[book]
title = "Example book"
authors = ["John Doe", "Jane Doe"]
description = "The example book covers examples."

[output.html]
theme = "my-theme"
curly-quotes = true
google-analytics = "123456"
additional-css = ["custom.css", "custom2.css"]
additional-js = ["custom.js"]

[output.html.playpen]
editor = "./path/to/editor"
editable = false

[output.html.search]
enable = true
searcher = "./path/to/searcher"
limit-results = 30
teaser-word-count = 30
use-boolean-and = true
boost-title = 2
boost-hierarchy = 1
boost-paragraph = 1
expand = true
heading-split-level = 3

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 8/19

This means, if you so desired, you could override all book metadata when bu
with something like

The latter case may be useful in situations where mdbook is invoked from a scr
sometimes isn't possible to update the book.toml before building.

Theme
The default renderer uses a handlebars template to render your markdown �le
default theme included in the mdBook binary.

The theme is totally customizable, you can selectively replace every �le from th
by adding a theme directory next to src folder in your project root. Create a n
of the �le you want to override and now that �le will be used instead of the def

Here are the �les you can override:

index.hbs is the handlebars template.
book.css is the style used in the output. If you want to change the design
probably the �le you want to modify. Sometimes in conjunction with inde
want to radically change the layout.
book.js is mostly used to add client side functionality, like hiding / un-hidi
changing the theme, ...
highlight.js is the JavaScript that is used to highlight code snippets, you sh
modify this.
highlight.css is the theme used for the code highlighting
favicon.png the favicon that will be used

Generally, when you want to tweak the theme, you don't need to override all th
need changes in the stylesheet, there is no point in overriding all the other �les
�les take precedence over built-in ones, they will not get updated with new �xe

Note: When you override a �le, it is possible that you break some functionality
recommend to use the �le from the default theme as template and only add / m
need. You can copy the default theme into your source directory automatically
mdbook init --theme just remove the �les you don't want to override.

index.hbs
index.hbs is the handlebars template that is used to render the book. The ma

processed to html and then injected in that template.

If you want to change the layout or style of your book, chances are that you wil
template a little bit. Here is what you need to know.

Data

A lot of data is exposed to the handlebars template with the "context". In the h
you can access this information by using

Here is a list of the properties that are exposed:

language Language of the book in the form en . To use in <html lang="{
example. At the moment it is hardcoded.

title Title of the book, as speci�ed in book.toml

chapter_title Title of the current chapter, as listed in SUMMARY.md

path Relative path to the original markdown �le from the source directory

$ export MDBOOK_BOOK="{'title': 'My Awesome Book', authors: ['Micha
$ mdbook build

{{name_of_property}}

http://handlebarsjs.com/

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 9/19

content This is the rendered markdown.

path_to_root This is a path containing exclusively ../ 's that points to the
from the current �le. Since the original directory structure is maintained,
relative links with this path_to_root .

chapters Is an array of dictionaries of the form

containing all the chapters of the book. It is used for example to construct
(sidebar).

Handlebars Helpers

In addition to the properties you can access, there are some handlebars helper

1. toc

The toc helper is used like this

and outputs something that looks like this, depending on the structure of

If you would like to make a toc with another structure, you have access to
property containing all the data. The only limitation at the moment is that
do it with JavaScript instead of with a handlebars helper.

2. previous / next

The previous and next helpers expose a link and name property to the
chapters.

They are used like this

The inner html will only be rendered if the previous / next chapter exists.
html can be changed to your liking.

If you would like me to expose other properties or helpers, please create a new issue

Syntax Highlighting
For syntax highlighting I use Highlight.js with a custom theme.

{"section": "1.2.1", "name": "name of this chapter", "path": "di

{{#toc}}{{/toc}}

<ul class="chapter">
 Some chapter

 <ul class="section">
 Some other Cha

<script>
var chapters = {{chapters}};
// Processing here
</script>

{{#previous}}

 <i class="fa fa-angle-left"></i>

{{/previous}}

https://github.com/rust-lang-nursery/mdBook/issues
https://highlightjs.org/

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 10/19

Automatic language detection has been turned o�, so you will probably want to
programming language you use like this

Custom theme

Like the rest of the theme, the �les used for syntax highlighting can be overridd

highlight.js normally you shouldn't have to overwrite this �le, unless you
recent version.
highlight.css theme used by highlight.js for syntax highlighting.

If you want to use another theme for highlight.js download it from their we
yourself, rename it to highlight.css and put it in src/theme (or the equivale
your source folder)

Now your theme will be used instead of the default theme.

Hiding code lines

There is a feature in mdBook that let's you hide code lines by prepending them

Will render as

At the moment, this only works for code examples that are annotated wit
would collide with semantics of some programming languages. In the futu
make this con�gurable through the book.toml so that everyone can bene

Improve default theme

If you think the default theme doesn't look quite right for a speci�c language, o
Feel free to submit a new issue explaining what you have in mind and I will take

You could also create a pull-request with the proposed improvements.

Overall the theme should be light and sober, without to many �ashy colors.

Editor
In addition to providing runnable code playpens, mdBook optionally allows the
order to enable editable code blocks, the following needs to be added to the bo

To make a speci�c block available for editing, the attribute editable needs to

```rust 
fn main() { 
    // Some code 
} 
```

fn main() {
 let x = 5;
 let y = 6;

 println!("{}", x + y);
}

 let x = 5;
 let y = 7;

 println!("{}", x + y);

[output.html.playpen]
editable = true

https://github.com/rust-lang-nursery/mdBook/issues

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 11/19

The above will result in this editable playpen:

Note the new Undo Changes button in the editable playpens.

Customizing the Editor

By default, the editor is the Ace editor, but, if desired, the functionality may be
providing a di�erent folder:

Note that for the editor changes to function correctly, the book.js inside of th
need to be overriden as it has some couplings with the default Ace editor.

MathJax Support
mdBook has optional support for math equations through MathJax.

To enable MathJax, you need to add the mathjax-support key to your book.to
output.html section.

Note: The usual delimiters MathJax uses are not yet supported. You can't cu
$$... $$ as delimiters and the \[... \] delimiters need an extra backs

Hopefully this limitation will be lifted soon.

Note: When you use double backslashes in MathJax blocks (for example in c
\begin{cases} \frac 1 2 \\ \frac 3 4 \end{cases}) you need to add two

(e.g., \begin{cases} \frac 1 2 \\\\ \frac 3 4 \end{cases}).

Inline equations

Inline equations are delimited by \\(and \\) . So for example, to render the
equation \(\int x dx = \frac{x^2}{2} + C \) you would write the following:

Block equations

Block equations are delimited by \\[and \\] . To render the following equati

\[\mu = \frac{1}{N} \sum_{i=0} x_i \]

you would write:

```rust,editable 
fn main() { 
    let number = 5; 
    print!("{}", number); 
} 
```

[output.html.playpen]
editable = true
editor = "/path/to/editor"

[output.html]
mathjax-support = true

\\(\int x dx = \frac{x^2}{2} + C \\)

fn main() {

 let number = 5;

 print!("{}", number);

}

https://ace.c9.io/
https://www.mathjax.org/

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 12/19

mdBook-speci�c markdown

Hiding code lines

There is a feature in mdBook that lets you hide code lines by prepending them

Will render as

Including �les

With the following syntax, you can include �les into your book:

The path to the �le has to be relative from the current source �le.

Usually, this command is used for including code snippets and examples. In thi
would include a speci�c part of the �le e.g. which only contains the relevant lin
We support four di�erent modes of partial includes:

The �rst command only includes the second line from �le file.rs . The second
all lines up to line 10, i.e. the lines from 11 till the end of the �le are omitted. Th
includes all lines from line 2, i.e. the �rst line is omitted. The last command incl
file.rs consisting of lines 2 to 10.

Inserting runnable Rust �les

With the following syntax, you can insert runnable Rust �les into your book:

The path to the Rust �le has to be relative from the current source �le.

When play is clicked, the code snippet will be sent to the Rust Playpen to be com
result is sent back and displayed directly underneath the code.

Here is what a rendered code snippet looks like:

\\[\mu = \frac{1}{N} \sum_{i=0} x_i \\]

fn main() {
 let x = 5;
 let y = 6;

 println!("{}", x + y);
}

 let x = 5;
 let y = 7;

 println!("{}", x + y);

{{#include file.rs}}

{{#include file.rs:2}}
{{#include file.rs::10}}
{{#include file.rs:2:}}
{{#include file.rs:2:10}}

{{#playpen file.rs}}

fn main() {
 println!("Hello World!");
}

https://play.rust-lang.org/

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 13/19

For Developers
While mdbook is mainly used as a command line tool, you can also import the u
directly and use that to manage a book. It also has a fairly �exible plugin mecha
create your own custom tooling and consumers (often referred to as backends)
some analysis of the book or render it in a di�erent format.

The For Developers chapters are here to show you the more advanced usage of

The two main ways a developer can hook into the book's build process is via,

Preprocessors
Alternate Backends

The Build Process

The process of rendering a book project goes through several steps.

1. Load the book
Parse the book.toml , falling back to the default Config if it doesn't
Load the book chapters into memory
Discover which preprocessors/backends should be used

2. Run the preprocessors
3. Call each backend in turn

Using mdbook as a Library

The mdbook binary is just a wrapper around the mdbook crate, exposing its fun
command-line program. As such it is quite easy to create your own programs w
internally, adding your own functionality (e.g. a custom preprocessor) or tweak

The easiest way to �nd out how to use the mdbook crate is by looking at the AP
documentation explains how one would use the MDBook type to load and build
con�g module gives a good explanation on the con�guration system.

Preprocessors
A preprocessor is simply a bit of code which gets run immediately after the boo
it gets rendered, allowing you to update and mutate the book. Possible use cas

Creating custom helpers like {{#include /path/to/file.md}}
Updating links so [some chapter](some_chapter.md) is automatically cha
[some chapter](some_chapter.html) for the HTML renderer

Substituting in latex-style expressions ($$ \frac{1}{3} $$) with their ma

Implementing a Preprocessor

A preprocessor is represented by the Preprocessor trait.

Where the PreprocessorContext is de�ned as

pub trait Preprocessor {
 fn name(&self) -> &str;
 fn run(&self, ctx: &PreprocessorContext, book: &mut Book) -> Resu
}

file:///home/michael/Documents/forks/mdBook/book-example/book/for_developers/preprocessors.html
file:///home/michael/Documents/forks/mdBook/book-example/book/for_developers/backends.html
http://rust-lang-nursery.github.io/mdBook/mdbook/
http://rust-lang-nursery.github.io/mdBook/mdbook/book/struct.MDBook.html
file:///home/michael/Documents/forks/mdBook/target/doc/mdbook/config/index.html

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 14/19

A complete Example

The magic happens within the run(...) method of the Preprocessor trait im

As direct access to the chapters is not possible, you will probably end up iterati
for_each_mut(...) :

The chapter.content is just a markdown formatted string, and you will have t
way. Even though it's entirely possible to implement some sort of manual �nd
that feels too unsafe you can use pulldown-cmark to parse the string into even
instead.

Finally you can use pulldown-cmark-to-cmark to transform these events back

The following code block shows how to remove all emphasis from markdown, a

For everything else, have a look at the complete example.

Alternate Backends
A "backend" is simply a program which mdbook will invoke during the book ren
program is passed a JSON representation of the book and con�guration inform
Once the backend receives this information it is free to do whatever it wants.

There are already several alternate backends on GitHub which can be used as a
how this is accomplished in practice.

mdbook-linkcheck - a simple program for verifying the book doesn't conta

pub struct PreprocessorContext {
 pub root: PathBuf,
 pub config: Config,
}

book.for_each_mut(|item: &mut BookItem| {
 if let BookItem::Chapter(ref mut chapter) = *item {
 eprintln!("{}: processing chapter '{}'", self.name(), chapter.n
 res = Some(
 match Deemphasize::remove_emphasis(&mut num_removed_items,
 Ok(md) => {
 chapter.content = md;
 Ok(())
 }
 Err(err) => Err(err),
 },
);
 }
});

fn remove_emphasis(num_removed_items: &mut i32, chapter: &mut Chapter
Result<String> {
 let mut buf = String::with_capacity(chapter.content.len());
 let events = Parser::new(&chapter.content).filter(|e| {
 let should_keep = match *e {
 Event::Start(Tag::Emphasis)
 | Event::Start(Tag::Strong)
 | Event::End(Tag::Emphasis)
 | Event::End(Tag::Strong) => false,
 _ => true,
 };
 if !should_keep {
 *num_removed_items += 1;
 }
 should_keep
 });
 cmark(events, &mut buf, None)
 .map(|_| buf)
 .map_err(|err| Error::from(format!("Markdown serialization fa
}

https://docs.rs/mdbook/0.1.3/mdbook/preprocess/trait.Preprocessor.html
https://crates.io/crates/pulldown-cmark
https://crates.io/crates/pulldown-cmark-to-cmark
https://github.com/rust-lang-nursery/mdBook/blob/master/examples/de-emphasize.rs
https://github.com/Michael-F-Bryan/mdbook-linkcheck

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 15/19

mdbook-epub - an EPUB renderer
mdbook-test - a program to run the book's contents through rust-skeptic
compiles and runs correctly (similar to rustdoc --test)

This page will step you through creating your own alternate backend in the form
counting program. Although it will be written in Rust, there's no reason why it c
accomplished using something like Python or Ruby.

Setting Up

First you'll want to create a new binary program and add mdbook as a depende

When our mdbook-wordcount plugin is invoked, mdbook will send it a JSON vers
RenderContext via our plugin's stdin . For convenience, there's a RenderCont

constructor which will load a RenderContext .

This is all the boilerplate necessary for our backend to load the book.

Note: The RenderContext contains a version �eld. This lets backends �gur
are compatible with the version of mdbook it's being called by. This version
from the corresponding �eld in mdbook 's Cargo.toml .

It is recommended that backends use the semver crate to inspect this �eld and
there may be a compatibility issue.

Inspecting the Book

Now our backend has a copy of the book, lets count how many words are in ea

Because the RenderContext contains a Book �eld (book), and a Book has the
method for iterating over all items in a Book , this step turns out to be just as e

$ cargo new --bin mdbook-wordcount
$ cd mdbook-wordcount
$ cargo add mdbook

// src/main.rs
extern crate mdbook;

use std::io;
use mdbook::renderer::RenderContext;

fn main() {
 let mut stdin = io::stdin();
 let ctx = RenderContext::from_json(&mut stdin).unwrap();
}

fn main() {
 let mut stdin = io::stdin();
 let ctx = RenderContext::from_json(&mut stdin).unwrap();

 for item in ctx.book.iter() {
 if let BookItem::Chapter(ref ch) = *item {
 let num_words = count_words(ch);
 println!("{}: {}", ch.name, num_words);
 }
 }
}

fn count_words(ch: &Chapter) -> usize {
 ch.content.split_whitespace().count()
}

https://github.com/Michael-F-Bryan/mdbook-epub
https://github.com/Michael-F-Bryan/mdbook-test
https://github.com/budziq/rust-skeptic
http://rust-lang-nursery.github.io/mdBook/mdbook/renderer/struct.RenderContext.html
http://rust-lang-nursery.github.io/mdBook/mdbook/renderer/struct.RenderContext.html#method.from_json
https://crates.io/crates/semver
http://rust-lang-nursery.github.io/mdBook/mdbook/book/struct.Book.html

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 16/19

Enabling the Backend

Now we've got the basics running, we want to actually use it. First, install the pr

Then cd to the particular book you'd like to count the words of and update its

When it loads a book into memory, mdbook will inspect your book.toml �le to
which backends to use by looking for all output.* tables. If none are provided
the default HTML renderer.

Notably, this means if you want to add your own custom backend you'll also ne
add the HTML backend, even if its table just stays empty.

Now you just need to build your book like normal, and everything should Just W

The reason we didn't need to specify the full name/path of our wordcount bac
mdbook will try to infer the program's name via convention. The executable for

typically called mdbook-foo , with an associated [output.foo] entry in the boo
tell mdbook what command to invoke (it may require command-line arguments
script), you can use the command �eld.

Con�guration

Now imagine you don't want to count the number of words on a particular cha
generated text/code, etc). The canonical way to do this is via the usual book.to
by adding items to your [output.foo] table.

$ cargo install

 [book]
 title = "mdBook Documentation"
 description = "Create book from markdown files. Like Gitbook but im
 authors = ["Mathieu David", "Michael-F-Bryan"]

+ [output.html]

+ [output.wordcount]

$ mdbook build
...
2018-01-16 07:31:15 [INFO] (mdbook::renderer): Invoking the "mdbook-w
mdBook: 126
Command Line Tool: 224
init: 283
build: 145
watch: 146
serve: 292
test: 139
Format: 30
SUMMARY.md: 259
Configuration: 784
Theme: 304
index.hbs: 447
Syntax highlighting: 314
MathJax Support: 153
Rust code specific features: 148
For Developers: 788
Alternate Backends: 710
Contributors: 85

 [book]
 title = "mdBook Documentation"
 description = "Create book from markdown files. Like Gitbook but im
 authors = ["Mathieu David", "Michael-F-Bryan"]

 [output.html]

 [output.wordcount]
+ command = "python /path/to/wordcount.py"

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 17/19

The Config can be treated roughly as a nested hashmap which lets you call m
access the con�g's contents, with a get_deserialized() convenience method
and automatically deserializing to some arbitrary type T .

To implement this, we'll create our own serializable WordcountConfig struct w
all con�guration for this backend.

First add serde and serde_derive to your Cargo.toml ,

And then you can create the con�g struct,

Now we just need to deserialize the WordcountConfig from our RenderContex
check to make sure we skip ignored chapters.

Output and Signalling Failure

While it's nice to print word counts to the terminal when a book is built, it migh
to output them to a �le somewhere. mdbook tells a backend where it should pl
output via the destination �eld in RenderContext .

$ cargo add serde serde_derive

extern crate serde;
#[macro_use]
extern crate serde_derive;

...

#[derive(Debug, Default, Serialize, Deserialize)]
#[serde(default, rename_all = "kebab-case")]
pub struct WordcountConfig {
 pub ignores: Vec<String>,
}

 fn main() {
 let mut stdin = io::stdin();
 let ctx = RenderContext::from_json(&mut stdin).unwrap();
+ let cfg: WordcountConfig = ctx.config
+ .get_deserialized("output.wordcount")
+ .unwrap_or_default();

 for item in ctx.book.iter() {
 if let BookItem::Chapter(ref ch) = *item {
+ if cfg.ignores.contains(&ch.name) {
+ continue;
+ }
+
 let num_words = count_words(ch);
 println!("{}: {}", ch.name, num_words);
 }
 }
 }

http://rust-lang-nursery.github.io/mdBook/mdbook/renderer/struct.RenderContext.html

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 18/19

Note: There is no guarantee that the destination directory exists or is empty
leave the previous contents to let backends do caching), so it's always a good
with fs::create_dir_all() .

There's always the possibility that an error will occur while processing a book (j
unwrap() 's we've written already), so mdbook will interpret a non-zero exit cod

failure.

For example, if we wanted to make sure all chapters have an even number of w
an odd number is encountered, then you may do something like this:

Now, if we reinstall the backend and build a book,

+ use std::fs::{self, File};
+ use std::io::{self, Write};
- use std::io;
 use mdbook::renderer::RenderContext;
 use mdbook::book::{BookItem, Chapter};

 fn main() {
 ...

+ let _ = fs::create_dir_all(&ctx.destination);
+ let mut f = File::create(ctx.destination.join("wordcounts.txt")
+
 for item in ctx.book.iter() {
 if let BookItem::Chapter(ref ch) = *item {
 ...

 let num_words = count_words(ch);
 println!("{}: {}", ch.name, num_words);
+ writeln!(f, "{}: {}", ch.name, num_words).unwrap();
 }
 }
 }

+ use std::process;
 ...

 fn main() {
 ...

 for item in ctx.book.iter() {
 if let BookItem::Chapter(ref ch) = *item {
 ...

 let num_words = count_words(ch);
 println!("{}: {}", ch.name, num_words);
 writeln!(f, "{}: {}", ch.name, num_words).unwrap();

+ if cfg.deny_odds && num_words % 2 == 1 {
+ eprintln!("{} has an odd number of words!", ch.name);
+ process::exit(1);
 }
 }
 }
 }

 #[derive(Debug, Default, Serialize, Deserialize)]
 #[serde(default, rename_all = "kebab-case")]
 pub struct WordcountConfig {
 pub ignores: Vec<String>,
+ pub deny_odds: bool,
 }

29/04/2018 mdBook Documentation

file:///home/michael/Documents/forks/mdBook/book-example/book/print.html 19/19

As you've probably already noticed, output from the plugin's subprocess is imm
through to the user. It is encouraged for plugins to follow the "rule of silence" a
output when necessary (e.g. an error in generation or a warning).

All environment variables are passed through to the backend, allowing you to u
RUST_LOG to control logging verbosity.

Wrapping Up

Although contrived, hopefully this example was enough to show how you'd cre
backend for mdbook . If you feel it's missing something, don't hesitate to create
tracker so we can improve the user guide.

The existing backends mentioned towards the start of this chapter should serv
of how it's done in real life, so feel free to skim through the source code or ask

Contributors
Here is a list of the contributors who have helped improving mdBook. Big shou

If you have contributed to mdBook and I forgot to add you, don't hesitate to ad
If you are in the list, feel free to add your real name & contact information if yo

mdinger
Kevin (kbknapp)
Steve Klabnik (steveklabnik)
Adam Solove (asolove)
Wayne Nilsen (waynenilsen)
funnkill
Fu Gangqiang (FuGangqiang)
Michael-F-Bryan
Chris Spiegel
projektir
Phaiax
Matt Ickstadt

$ cargo install --force
$ mdbook build /path/to/book
...
2018-01-16 21:21:39 [INFO] (mdbook::renderer): Invoking the "wordcoun
mdBook: 126
Command Line Tool: 224
init: 283
init has an odd number of words!
2018-01-16 21:21:39 [ERROR] (mdbook::renderer): Renderer exited with
code.
2018-01-16 21:21:39 [ERROR] (mdbook::utils): Error: Rendering failed
2018-01-16 21:21:39 [ERROR] (mdbook::utils): Caused By: The "mdboo
renderer failed

https://github.com/rust-lang-nursery/mdBook/issues
https://github.com/mdinger
https://github.com/kbknapp
https://github.com/steveklabnik
https://github.com/asolove
https://github.com/waynenilsen
https://github.com/funkill
https://github.com/FuGangqiang
https://github.com/Michael-F-Bryan
https://github.com/cspiegel
https://github.com/projektir
https://github.com/Phaiax
https://github.com/mattico

