|
| 1 | +use syntax::hir::{ |
| 2 | + Hir, HirKind, Literal, ClassBytes, ClassBytesRange, |
| 3 | + Class, Visitor, RepetitionRange, RepetitionKind |
| 4 | +}; |
| 5 | +use syntax::hir; |
| 6 | +use utf8_ranges::Utf8Sequences; |
| 7 | + |
| 8 | +/// True iff the given expression is one-pass |
| 9 | +pub fn is_onepass(expr: &Hir) -> bool { |
| 10 | + hir::visit(expr, IsOnePassVisitor::new()).unwrap() |
| 11 | +} |
| 12 | + |
| 13 | +struct IsOnePassVisitor(bool); |
| 14 | + |
| 15 | +impl Visitor for IsOnePassVisitor { |
| 16 | + type Output = bool; |
| 17 | + type Err = (); |
| 18 | + |
| 19 | + fn finish(self) -> Result<bool, ()> { |
| 20 | + Ok(self.0) |
| 21 | + } |
| 22 | + |
| 23 | + fn visit_pre(&mut self, hir: &Hir) -> Result<(), ()> { |
| 24 | + if !self.0 { |
| 25 | + return Ok(()) |
| 26 | + } |
| 27 | + |
| 28 | + match hir.kind() { |
| 29 | + &HirKind::Concat(ref es) => self.check_concat(&es), |
| 30 | + &HirKind::Alternation(ref es) => self.check_alternation(&es), |
| 31 | + &HirKind::Repetition(ref rep) => { |
| 32 | + if fset_of(&*rep.hir).is_empty() { |
| 33 | + self.0 = false; |
| 34 | + } |
| 35 | + } |
| 36 | + &HirKind::Class(ref cls) => self.check_cls(cls), |
| 37 | + _ => () |
| 38 | + } |
| 39 | + |
| 40 | + Ok(()) |
| 41 | + } |
| 42 | +} |
| 43 | + |
| 44 | +impl IsOnePassVisitor { |
| 45 | + fn new() -> Self { |
| 46 | + IsOnePassVisitor(true) |
| 47 | + } |
| 48 | + |
| 49 | + fn check_concat(&mut self, es: &[Hir]) { |
| 50 | + let mut empty_run = vec![]; |
| 51 | + |
| 52 | + for e in NestedConcat::new(es) { |
| 53 | + // TODO(ethan):yakshaving factor the determination of when |
| 54 | + // a regex accepts_empty out into a separate function, |
| 55 | + // so that we don't compute the whole first set when we |
| 56 | + // don't need to. |
| 57 | + let fset = fset_of(e); |
| 58 | + let is_rep = match e.kind() { |
| 59 | + &HirKind::Repetition(_) => true, |
| 60 | + _ => false, |
| 61 | + }; |
| 62 | + |
| 63 | + empty_run.push(e); |
| 64 | + if !(fset.accepts_empty || is_rep) { |
| 65 | + // this is the last one in the run |
| 66 | + break; |
| 67 | + } |
| 68 | + } |
| 69 | + |
| 70 | + if empty_run.len() > 0 { |
| 71 | + self.0 = self.0 && !fsets_clash(&empty_run); |
| 72 | + } |
| 73 | + } |
| 74 | + |
| 75 | + fn check_alternation(&mut self, es: &[Hir]) { |
| 76 | + self.0 = self.0 && !fsets_clash(&es.iter().collect::<Vec<_>>()); |
| 77 | + } |
| 78 | + |
| 79 | + // Unicode classes are really big alternatives from the byte |
| 80 | + // oriented point of view. |
| 81 | + // |
| 82 | + // This function translates a unicode class into the |
| 83 | + // byte space and checks for intersecting first sets. |
| 84 | + fn check_cls(&mut self, cls: &Class) { |
| 85 | + match cls { |
| 86 | + &Class::Unicode(ref ucls) => { |
| 87 | + let mut seen_char: [bool; 256] = [false; 256]; |
| 88 | + |
| 89 | + for cr in ucls.iter() { |
| 90 | + for br in Utf8Sequences::new(cr.start(), cr.end()) { |
| 91 | + let first = br.as_slice()[0]; |
| 92 | + for b in first.start..(first.end+1) { |
| 93 | + if seen_char[b as usize] { |
| 94 | + self.0 = false; |
| 95 | + return; |
| 96 | + } |
| 97 | + seen_char[b as usize] = true; |
| 98 | + } |
| 99 | + } |
| 100 | + } |
| 101 | + } |
| 102 | + _ => {} // FALLTHROUGH |
| 103 | + } |
| 104 | + } |
| 105 | + |
| 106 | +} |
| 107 | + |
| 108 | +/// Check if a list of first sets is incompatable. |
| 109 | +/// |
| 110 | +/// O(n^2), but n will usually be quite small. |
| 111 | +fn fsets_clash(es: &[&Hir]) -> bool { |
| 112 | + for (i, e1) in es.iter().enumerate() { |
| 113 | + for (j, e2) in es.iter().enumerate() { |
| 114 | + if i != j { |
| 115 | + let mut fset = fset_of(e1); |
| 116 | + let fset2 = fset_of(e2); |
| 117 | + |
| 118 | + // For the regex /a|()+/, we don't have a way to |
| 119 | + // differentiate the branches, so we are not onepass. |
| 120 | + // |
| 121 | + // We might be able to loosen this restriction by |
| 122 | + // considering the expression after the alternative |
| 123 | + // if there is one. |
| 124 | + if fset.is_empty() || fset2.is_empty() { |
| 125 | + return true; |
| 126 | + } |
| 127 | + |
| 128 | + fset.intersect(&fset2); |
| 129 | + if ! fset.is_empty() { |
| 130 | + return true; |
| 131 | + } |
| 132 | + } |
| 133 | + } |
| 134 | + } |
| 135 | + false |
| 136 | +} |
| 137 | + |
| 138 | + |
| 139 | +/// Compute the first set of a given regular expression. |
| 140 | +/// |
| 141 | +/// The first set of a regular expression is the set of all characters |
| 142 | +/// which might begin it. This is a less general version of the |
| 143 | +/// notion of a regular expression preview (the first set can be |
| 144 | +/// thought of as the 1-preview of a regular expression). |
| 145 | +/// |
| 146 | +/// Note that first sets are byte-oriented because the DFA is |
| 147 | +/// byte oriented. This means an expression like /Δ|δ/ is actually not |
| 148 | +/// one-pass, even though there is clearly no non-determinism inherent |
| 149 | +/// to the regex at a unicode code point level (big delta and little |
| 150 | +/// delta start with the same byte). |
| 151 | +fn fset_of(expr: &Hir) -> FirstSet { |
| 152 | + fn singleton(b: u8) -> FirstSet { |
| 153 | + let mut f = FirstSet::empty(); |
| 154 | + f.push_bytes(ClassBytesRange::new(b, b)); |
| 155 | + f |
| 156 | + } |
| 157 | + |
| 158 | + match expr.kind() { |
| 159 | + &HirKind::Empty => FirstSet::epsilon(), |
| 160 | + &HirKind::Literal(ref lit) => { |
| 161 | + match lit { |
| 162 | + &Literal::Unicode(c) => singleton(first_byte(c)), |
| 163 | + &Literal::Byte(b) => singleton(b), |
| 164 | + } |
| 165 | + } |
| 166 | + &HirKind::Class(ref class) => { |
| 167 | + match class { |
| 168 | + &Class::Unicode(ref c) => { |
| 169 | + // Get all the bytes which might begin this unicode |
| 170 | + // class. |
| 171 | + let mut cb = FirstSet::empty(); |
| 172 | + for cr in c.iter() { |
| 173 | + for br in Utf8Sequences::new(cr.start(), cr.end()) { |
| 174 | + let first = br.as_slice()[0]; |
| 175 | + cb.push_bytes( |
| 176 | + ClassBytesRange::new(first.start, first.end)); |
| 177 | + } |
| 178 | + } |
| 179 | + cb |
| 180 | + } |
| 181 | + &Class::Bytes(ref b) => |
| 182 | + FirstSet::new(b.iter().map(|x| *x), false), |
| 183 | + } |
| 184 | + } |
| 185 | + |
| 186 | + // When an empty look (Anchor or WordBoundary) is at the start of |
| 187 | + // a concatenation, we conservatively assume that the assertion |
| 188 | + // will pass, so we just drop it. Then we can only get to this |
| 189 | + // point if we are dealing with some sort of naked empty look. |
| 190 | + // For now we just do the most conservative thing and say |
| 191 | + // that such an emptylook could potentially match on any character. |
| 192 | + &HirKind::Anchor(_) | &HirKind::WordBoundary(_) => FirstSet::anychar(), |
| 193 | + |
| 194 | + &HirKind::Repetition(ref rep) => { |
| 195 | + let mut f = fset_of(&*rep.hir); |
| 196 | + match rep.kind { |
| 197 | + RepetitionKind::ZeroOrOne => f.accepts_empty = true, |
| 198 | + RepetitionKind::ZeroOrMore => f.accepts_empty = true, |
| 199 | + RepetitionKind::OneOrMore => {}, |
| 200 | + RepetitionKind::Range(ref range) => { |
| 201 | + match range { |
| 202 | + &RepetitionRange::Exactly(0) |
| 203 | + | &RepetitionRange::AtLeast(0) |
| 204 | + | &RepetitionRange::Bounded(0, _) => |
| 205 | + f.accepts_empty = true, |
| 206 | + _ => {} |
| 207 | + } |
| 208 | + } |
| 209 | + } |
| 210 | + f |
| 211 | + }, |
| 212 | + &HirKind::Group(ref group) => fset_of(&group.hir), |
| 213 | + |
| 214 | + // The most involved case. We need to strip leading empty-looks |
| 215 | + // as well as take the union of the first sets of the first n+1 |
| 216 | + // expressions where n is the number of leading repetitions. |
| 217 | + &HirKind::Concat(ref es) => { |
| 218 | + let mut fset = FirstSet::empty(); |
| 219 | + for (i, e) in es.iter().enumerate() { |
| 220 | + match e.kind() { |
| 221 | + &HirKind::Anchor(_) | &HirKind::WordBoundary(_) => { |
| 222 | + // Ignore any leading emptylooks, but any in tail |
| 223 | + // position have to be accounted for. |
| 224 | + if i == es.len() - 1 { |
| 225 | + fset.union(&FirstSet::anychar()); |
| 226 | + } |
| 227 | + } |
| 228 | + _ => { |
| 229 | + let inner_fset = fset_of(e); |
| 230 | + fset.union(&inner_fset); |
| 231 | + |
| 232 | + if !inner_fset.accepts_empty() { |
| 233 | + // We can stop accumulating after we stop seeing |
| 234 | + // first sets which contain epsilon. |
| 235 | + // Also, a contatination which terminated by |
| 236 | + // one or more expressions which do not accept |
| 237 | + // epsilon itself does not acceept epsilon. |
| 238 | + fset.accepts_empty = false; |
| 239 | + break; |
| 240 | + } |
| 241 | + } |
| 242 | + } |
| 243 | + } |
| 244 | + fset |
| 245 | + } |
| 246 | + &HirKind::Alternation(ref es) => { |
| 247 | + let mut fset = FirstSet::empty(); |
| 248 | + for e in es { |
| 249 | + fset.union(&fset_of(e)); |
| 250 | + } |
| 251 | + fset |
| 252 | + } |
| 253 | + } |
| 254 | +} |
| 255 | + |
| 256 | +/// The first byte of a unicode code point. |
| 257 | +/// |
| 258 | +/// We only ever care about the first byte of a particular character, |
| 259 | +/// because the onepass DFA is implemented in the byte space, not the |
| 260 | +/// character space. This means, for example, that a branch between |
| 261 | +/// lowercase delta and uppercase delta is actually non-deterministic. |
| 262 | +fn first_byte(c: char) -> u8 { |
| 263 | + let mut b: [u8; 4] = [0; 4]; |
| 264 | + c.encode_utf8(&mut b); |
| 265 | + b[0] |
| 266 | +} |
| 267 | + |
| 268 | +/// A representation of all the possible ways a word in the language |
| 269 | +/// of a regex could begin. ClassBytes has no way to express the empty |
| 270 | +/// string, so we add an extra flag to indicate if a FirstSet includes |
| 271 | +/// epsilon. Put in a more theoretical way all firstsets are subsets of |
| 272 | +/// SIGMA `union` { epsilon }. |
| 273 | +#[derive(Debug, PartialEq, Eq)] |
| 274 | +struct FirstSet { |
| 275 | + bytes: ClassBytes, |
| 276 | + pub accepts_empty: bool, |
| 277 | +} |
| 278 | + |
| 279 | +impl FirstSet { |
| 280 | + fn empty() -> Self { |
| 281 | + FirstSet { |
| 282 | + bytes: ClassBytes::empty(), |
| 283 | + accepts_empty: false, |
| 284 | + } |
| 285 | + } |
| 286 | + |
| 287 | + pub fn new<I>(ranges: I, accepts_empty: bool) -> Self |
| 288 | + where I: IntoIterator<Item=ClassBytesRange> |
| 289 | + { |
| 290 | + FirstSet { |
| 291 | + bytes: ClassBytes::new(ranges), |
| 292 | + accepts_empty: accepts_empty, |
| 293 | + } |
| 294 | + } |
| 295 | + |
| 296 | + fn anychar() -> FirstSet { |
| 297 | + let mut f = FirstSet::empty(); |
| 298 | + f.push_bytes(ClassBytesRange::new(b'\0', b'\xFF')); |
| 299 | + f |
| 300 | + } |
| 301 | + |
| 302 | + fn epsilon() -> FirstSet { |
| 303 | + FirstSet { |
| 304 | + bytes: ClassBytes::empty(), |
| 305 | + accepts_empty: true, |
| 306 | + } |
| 307 | + } |
| 308 | + |
| 309 | + fn push_bytes(&mut self, byte_range: ClassBytesRange) { |
| 310 | + self.bytes.push(byte_range); |
| 311 | + } |
| 312 | + |
| 313 | + fn union(&mut self, other: &FirstSet) { |
| 314 | + self.bytes.union(&other.bytes); |
| 315 | + self.accepts_empty = self.accepts_empty || other.accepts_empty; |
| 316 | + } |
| 317 | + |
| 318 | + fn intersect(&mut self, other: &FirstSet) { |
| 319 | + self.bytes.intersect(&other.bytes); |
| 320 | + self.accepts_empty = self.accepts_empty && other.accepts_empty; |
| 321 | + } |
| 322 | + |
| 323 | + fn is_empty(&self) -> bool { |
| 324 | + self.bytes.is_empty() && !self.accepts_empty |
| 325 | + } |
| 326 | + |
| 327 | + fn accepts_empty(&self) -> bool { |
| 328 | + self.accepts_empty |
| 329 | + } |
| 330 | +} |
| 331 | + |
| 332 | +/// An iterator over a concatenation of expressions which |
| 333 | +/// drills down into other embedded concatenations. |
| 334 | +struct NestedConcat<'a>(Vec<(&'a [Hir], usize)>); |
| 335 | +impl<'a> NestedConcat<'a> { |
| 336 | + fn new(es: &'a [Hir]) -> Self { |
| 337 | + NestedConcat(vec![(es, 0)]) |
| 338 | + } |
| 339 | +} |
| 340 | +impl<'a> Iterator for NestedConcat<'a> { |
| 341 | + type Item = &'a Hir; |
| 342 | + |
| 343 | + fn next(&mut self) -> Option<&'a Hir> { |
| 344 | + if self.0.len() == 0 { |
| 345 | + return None; |
| 346 | + } |
| 347 | + |
| 348 | + let tip = self.0.len() - 1; |
| 349 | + let (es, idx) = self.0[tip]; |
| 350 | + |
| 351 | + if idx >= es.len() { |
| 352 | + self.0.pop(); |
| 353 | + return self.next(); |
| 354 | + } |
| 355 | + |
| 356 | + self.0[tip].1 += 1; |
| 357 | + |
| 358 | + match es[idx].kind() { |
| 359 | + &HirKind::Concat(ref es) => { |
| 360 | + self.0.push((es, 0)); |
| 361 | + self.next() |
| 362 | + } |
| 363 | + _ => Some(&es[idx]), |
| 364 | + } |
| 365 | + } |
| 366 | +} |
| 367 | + |
| 368 | +#[cfg(test)] |
| 369 | +mod tests { |
| 370 | + use syntax::Parser; |
| 371 | + use syntax::hir::Hir; |
| 372 | + use super::*; |
| 373 | + |
| 374 | + fn is_intersecting_fset(e1: &Hir, e2: &Hir) -> bool { |
| 375 | + let mut fset = fset_of(e1); |
| 376 | + fset.intersect(&fset_of(e2)); |
| 377 | + ! fset.is_empty() |
| 378 | + } |
| 379 | + |
| 380 | + // |
| 381 | + // First Set intersection smoke tests |
| 382 | + // |
| 383 | + |
| 384 | + #[test] |
| 385 | + fn fset_lit() { |
| 386 | + let e1 = Parser::new().parse("a").unwrap(); |
| 387 | + let e2 = Parser::new().parse("a").unwrap(); |
| 388 | + let e3 = Parser::new().parse("b").unwrap(); |
| 389 | + |
| 390 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 391 | + assert!(!is_intersecting_fset(&e1, &e3)); |
| 392 | + } |
| 393 | + |
| 394 | + #[test] |
| 395 | + fn fset_class() { |
| 396 | + let e1 = Parser::new().parse("[a]").unwrap(); |
| 397 | + let e2 = Parser::new().parse("[a]").unwrap(); |
| 398 | + let e3 = Parser::new().parse("[b]").unwrap(); |
| 399 | + |
| 400 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 401 | + assert!(!is_intersecting_fset(&e1, &e3)); |
| 402 | + } |
| 403 | + |
| 404 | + #[test] |
| 405 | + fn fset_class_n() { |
| 406 | + let e1 = Parser::new().parse("[xamn]").unwrap(); |
| 407 | + let e2 = Parser::new().parse("[rlwa]").unwrap(); |
| 408 | + let e3 = Parser::new().parse("[bcq]").unwrap(); |
| 409 | + |
| 410 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 411 | + assert!(!is_intersecting_fset(&e1, &e3)); |
| 412 | + } |
| 413 | + |
| 414 | + #[test] |
| 415 | + fn fset_alt() { |
| 416 | + let e1 = Parser::new().parse("ab|bc|ad").unwrap(); |
| 417 | + let e2 = Parser::new().parse("yyyy|am|zz").unwrap(); |
| 418 | + let e3 = Parser::new().parse("cc|ww").unwrap(); |
| 419 | + |
| 420 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 421 | + assert!(!is_intersecting_fset(&e1, &e3)); |
| 422 | + } |
| 423 | + |
| 424 | + #[test] |
| 425 | + fn fset_group() { |
| 426 | + let e1 = Parser::new().parse("(?:ab)").unwrap(); |
| 427 | + let e2 = Parser::new().parse("(?:aq)").unwrap(); |
| 428 | + let e3 = Parser::new().parse("(?:m)").unwrap(); |
| 429 | + |
| 430 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 431 | + assert!(!is_intersecting_fset(&e1, &e3)); |
| 432 | + } |
| 433 | + |
| 434 | + #[test] |
| 435 | + fn fset_concat() { |
| 436 | + let e1 = Parser::new().parse("aa(?:nb)").unwrap(); |
| 437 | + let e2 = Parser::new().parse("aa(?:rq)").unwrap(); |
| 438 | + let e3 = Parser::new().parse("bb(?:m)").unwrap(); |
| 439 | + |
| 440 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 441 | + assert!(!is_intersecting_fset(&e1, &e3)); |
| 442 | + } |
| 443 | + |
| 444 | + #[test] |
| 445 | + fn fset_word_boundary_dropped() { |
| 446 | + let e1 = Parser::new().parse(r"aa").unwrap(); |
| 447 | + let e2 = Parser::new().parse(r"\baa").unwrap(); |
| 448 | + let e3 = Parser::new().parse(r"\bbb").unwrap(); |
| 449 | + |
| 450 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 451 | + assert!(!is_intersecting_fset(&e1, &e3)); |
| 452 | + } |
| 453 | + |
| 454 | + #[test] |
| 455 | + fn fset_word_boundary_all() { |
| 456 | + let e1 = Parser::new().parse(r"aa").unwrap(); |
| 457 | + let e2 = Parser::new().parse(r"\b").unwrap(); |
| 458 | + |
| 459 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 460 | + } |
| 461 | + |
| 462 | + #[test] |
| 463 | + fn fset_not_word_boundary_dropped() { |
| 464 | + let e1 = Parser::new().parse(r"aa").unwrap(); |
| 465 | + let e2 = Parser::new().parse(r"\Baa").unwrap(); |
| 466 | + let e3 = Parser::new().parse(r"\Bbb").unwrap(); |
| 467 | + |
| 468 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 469 | + assert!(!is_intersecting_fset(&e1, &e3)); |
| 470 | + } |
| 471 | + |
| 472 | + #[test] |
| 473 | + fn fset_not_word_boundary_all() { |
| 474 | + let e1 = Parser::new().parse(r"aa").unwrap(); |
| 475 | + let e2 = Parser::new().parse(r"\B").unwrap(); |
| 476 | + |
| 477 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 478 | + } |
| 479 | + |
| 480 | + #[test] |
| 481 | + fn fset_start_anchor_dropped() { |
| 482 | + let e1 = Parser::new().parse(r"aa").unwrap(); |
| 483 | + let e2 = Parser::new().parse(r"^aa").unwrap(); |
| 484 | + let e3 = Parser::new().parse(r"^bb").unwrap(); |
| 485 | + |
| 486 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 487 | + assert!(!is_intersecting_fset(&e1, &e3)); |
| 488 | + } |
| 489 | + |
| 490 | + #[test] |
| 491 | + fn fset_terminal_emptylook_all() { |
| 492 | + let e = Parser::new().parse(r"a*\b").unwrap(); |
| 493 | + |
| 494 | + let mut total_accept = FirstSet::anychar(); |
| 495 | + total_accept.accepts_empty = true; |
| 496 | + |
| 497 | + assert_eq!(total_accept, fset_of(&e)); |
| 498 | + } |
| 499 | + |
| 500 | + #[test] |
| 501 | + fn fset_empty_alt() { |
| 502 | + let e1 = Parser::new().parse(r"(?:a|())b").unwrap(); |
| 503 | + let e2 = Parser::new().parse(r"b").unwrap(); |
| 504 | + |
| 505 | + assert!(is_intersecting_fset(&e1, &e2)); |
| 506 | + } |
| 507 | + |
| 508 | + // |
| 509 | + // onepass smoke tests |
| 510 | + // |
| 511 | + |
| 512 | + // This test is pulled right from some of Russ Cox's |
| 513 | + // comments on onepass regex. |
| 514 | + // |
| 515 | + // Note that Russ Cox's other example of a onepass regex |
| 516 | + // (r"(\d+)-(\d+)") is actually not onepass for us because |
| 517 | + // there is byte-level nondeterminism in the \d character |
| 518 | + // class, and we care about things in the byte space rather |
| 519 | + // than the character space. If you do a onepass engine at |
| 520 | + // the character level, Cox's example is indeed onepass. |
| 521 | + #[test] |
| 522 | + fn is_onepass_smoke_test1() { |
| 523 | + let e1 = Parser::new().parse(r"([^x]*)x(.*)").unwrap(); |
| 524 | + let e2 = Parser::new().parse(r"(.*)x(.*)").unwrap(); |
| 525 | + |
| 526 | + assert!(is_onepass(&e1)); |
| 527 | + assert!(!is_onepass(&e2)); |
| 528 | + } |
| 529 | + |
| 530 | + #[test] |
| 531 | + fn is_onepass_empty_alt() { |
| 532 | + let e1 = Parser::new().parse(r"(a|())b").unwrap(); |
| 533 | + let e2 = Parser::new().parse(r"(a|())a").unwrap(); |
| 534 | + |
| 535 | + assert!(is_onepass(&e1)); |
| 536 | + assert!(!is_onepass(&e2)); |
| 537 | + } |
| 538 | + |
| 539 | + #[test] |
| 540 | + fn is_onepass_rep() { |
| 541 | + let e1 = Parser::new().parse(r"a+a").unwrap(); |
| 542 | + let e2 = Parser::new().parse(r"a*a").unwrap(); |
| 543 | + |
| 544 | + assert!(!is_onepass(&e1)); |
| 545 | + assert!(!is_onepass(&e2)); |
| 546 | + } |
| 547 | +} |
0 commit comments