diff --git a/src/doc/guide-tasks.md b/src/doc/guide-tasks.md
index 5dd58ccb61d9c..f9483fb4d6b91 100644
--- a/src/doc/guide-tasks.md
+++ b/src/doc/guide-tasks.md
@@ -306,7 +306,7 @@ be distributed on the available cores.
 fn partial_sum(start: uint) -> f64 {
     let mut local_sum = 0f64;
     for num in range(start*100000, (start+1)*100000) {
-        local_sum += (num as f64 + 1.0).powf(&-2.0);
+        local_sum += (num as f64 + 1.0).powf(-2.0);
     }
     local_sum
 }
@@ -343,7 +343,7 @@ extern crate sync;
 use sync::Arc;
 
 fn pnorm(nums: &[f64], p: uint) -> f64 {
-    nums.iter().fold(0.0, |a,b| a+(*b).powf(&(p as f64)) ).powf(&(1.0 / (p as f64)))
+    nums.iter().fold(0.0, |a, b| a + b.powf(p as f64)).powf(1.0 / (p as f64))
 }
 
 fn main() {
diff --git a/src/libnum/complex.rs b/src/libnum/complex.rs
index 069dd2164f511..e0fdc8a363df5 100644
--- a/src/libnum/complex.rs
+++ b/src/libnum/complex.rs
@@ -82,7 +82,7 @@ impl<T: Clone + Float> Cmplx<T> {
     /// Calculate |self|
     #[inline]
     pub fn norm(&self) -> T {
-        self.re.hypot(&self.im)
+        self.re.hypot(self.im)
     }
 }
 
@@ -90,7 +90,7 @@ impl<T: Clone + Float> Cmplx<T> {
     /// Calculate the principal Arg of self.
     #[inline]
     pub fn arg(&self) -> T {
-        self.im.atan2(&self.re)
+        self.im.atan2(self.re)
     }
     /// Convert to polar form (r, theta), such that `self = r * exp(i
     /// * theta)`
diff --git a/src/libnum/rational.rs b/src/libnum/rational.rs
index e6b63f23741dc..cff1fb30b567a 100644
--- a/src/libnum/rational.rs
+++ b/src/libnum/rational.rs
@@ -15,7 +15,7 @@ use Integer;
 use std::cmp;
 use std::fmt;
 use std::from_str::FromStr;
-use std::num::{Zero,One,ToStrRadix,FromStrRadix,Round};
+use std::num::{Zero, One, ToStrRadix, FromStrRadix};
 use bigint::{BigInt, BigUint, Sign, Plus, Minus};
 
 /// Represents the ratio between 2 numbers.
@@ -113,6 +113,40 @@ impl<T: Clone + Integer + Ord>
     pub fn recip(&self) -> Ratio<T> {
         Ratio::new_raw(self.denom.clone(), self.numer.clone())
     }
+
+    pub fn floor(&self) -> Ratio<T> {
+        if *self < Zero::zero() {
+            Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom)
+        } else {
+            Ratio::from_integer(self.numer / self.denom)
+        }
+    }
+
+    pub fn ceil(&self) -> Ratio<T> {
+        if *self < Zero::zero() {
+            Ratio::from_integer(self.numer / self.denom)
+        } else {
+            Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom)
+        }
+    }
+
+    #[inline]
+    pub fn round(&self) -> Ratio<T> {
+        if *self < Zero::zero() {
+            Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom)
+        } else {
+            Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom)
+        }
+    }
+
+    #[inline]
+    pub fn trunc(&self) -> Ratio<T> {
+        Ratio::from_integer(self.numer / self.denom)
+    }
+
+    pub fn fract(&self) -> Ratio<T> {
+        Ratio::new_raw(self.numer % self.denom, self.denom.clone())
+    }
 }
 
 impl Ratio<BigInt> {
@@ -238,45 +272,6 @@ impl<T: Clone + Integer + Ord>
 impl<T: Clone + Integer + Ord>
     Num for Ratio<T> {}
 
-/* Utils */
-impl<T: Clone + Integer + Ord>
-    Round for Ratio<T> {
-
-    fn floor(&self) -> Ratio<T> {
-        if *self < Zero::zero() {
-            Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom)
-        } else {
-            Ratio::from_integer(self.numer / self.denom)
-        }
-    }
-
-    fn ceil(&self) -> Ratio<T> {
-        if *self < Zero::zero() {
-            Ratio::from_integer(self.numer / self.denom)
-        } else {
-            Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom)
-        }
-    }
-
-    #[inline]
-    fn round(&self) -> Ratio<T> {
-        if *self < Zero::zero() {
-            Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom)
-        } else {
-            Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom)
-        }
-    }
-
-    #[inline]
-    fn trunc(&self) -> Ratio<T> {
-        Ratio::from_integer(self.numer / self.denom)
-    }
-
-    fn fract(&self) -> Ratio<T> {
-        Ratio::new_raw(self.numer % self.denom, self.denom.clone())
-    }
-}
-
 /* String conversions */
 impl<T: fmt::Show> fmt::Show for Ratio<T> {
     /// Renders as `numer/denom`.
@@ -636,19 +631,19 @@ mod test {
 
         // f32
         test(3.14159265359f32, ("13176795", "4194304"));
-        test(2f32.powf(&100.), ("1267650600228229401496703205376", "1"));
-        test(-2f32.powf(&100.), ("-1267650600228229401496703205376", "1"));
-        test(1.0 / 2f32.powf(&100.), ("1", "1267650600228229401496703205376"));
+        test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));
+        test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1"));
+        test(1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376"));
         test(684729.48391f32, ("1369459", "2"));
         test(-8573.5918555f32, ("-4389679", "512"));
 
         // f64
         test(3.14159265359f64, ("3537118876014453", "1125899906842624"));
-        test(2f64.powf(&100.), ("1267650600228229401496703205376", "1"));
-        test(-2f64.powf(&100.), ("-1267650600228229401496703205376", "1"));
+        test(2f64.powf(100.), ("1267650600228229401496703205376", "1"));
+        test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1"));
         test(684729.48391f64, ("367611342500051", "536870912"));
         test(-8573.5918555, ("-4713381968463931", "549755813888"));
-        test(1.0 / 2f64.powf(&100.), ("1", "1267650600228229401496703205376"));
+        test(1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376"));
     }
 
     #[test]
diff --git a/src/librand/distributions/gamma.rs b/src/librand/distributions/gamma.rs
index dd249a1fbcac8..1bb2c35bce206 100644
--- a/src/librand/distributions/gamma.rs
+++ b/src/librand/distributions/gamma.rs
@@ -147,7 +147,7 @@ impl IndependentSample<f64> for GammaSmallShape {
     fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
         let Open01(u) = rng.gen::<Open01<f64>>();
 
-        self.large_shape.ind_sample(rng) * u.powf(&self.inv_shape)
+        self.large_shape.ind_sample(rng) * u.powf(self.inv_shape)
     }
 }
 impl IndependentSample<f64> for GammaLargeShape {
diff --git a/src/libstd/num/f32.rs b/src/libstd/num/f32.rs
index 7cd6aaa631086..5da03898f05d4 100644
--- a/src/libstd/num/f32.rs
+++ b/src/libstd/num/f32.rs
@@ -14,6 +14,7 @@
 
 use prelude::*;
 
+use cast;
 use default::Default;
 use from_str::FromStr;
 use libc::{c_int};
@@ -213,12 +214,17 @@ impl Neg<f32> for f32 {
 impl Signed for f32 {
     /// Computes the absolute value. Returns `NAN` if the number is `NAN`.
     #[inline]
-    fn abs(&self) -> f32 { unsafe{intrinsics::fabsf32(*self)} }
+    fn abs(&self) -> f32 {
+        unsafe { intrinsics::fabsf32(*self) }
+    }
 
-    /// The positive difference of two numbers. Returns `0.0` if the number is less than or
-    /// equal to `other`, otherwise the difference between`self` and `other` is returned.
+    /// The positive difference of two numbers. Returns `0.0` if the number is
+    /// less than or equal to `other`, otherwise the difference between`self`
+    /// and `other` is returned.
     #[inline]
-    fn abs_sub(&self, other: &f32) -> f32 { unsafe{cmath::fdimf(*self, *other)} }
+    fn abs_sub(&self, other: &f32) -> f32 {
+        unsafe { cmath::fdimf(*self, *other) }
+    }
 
     /// # Returns
     ///
@@ -227,7 +233,9 @@ impl Signed for f32 {
     /// - `NAN` if the number is NaN
     #[inline]
     fn signum(&self) -> f32 {
-        if self.is_nan() { NAN } else { unsafe{intrinsics::copysignf32(1.0, *self)} }
+        if self.is_nan() { NAN } else {
+            unsafe { intrinsics::copysignf32(1.0, *self) }
+        }
     }
 
     /// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
@@ -239,33 +247,6 @@ impl Signed for f32 {
     fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == NEG_INFINITY }
 }
 
-impl Round for f32 {
-    /// Round half-way cases toward `NEG_INFINITY`
-    #[inline]
-    fn floor(&self) -> f32 { unsafe{intrinsics::floorf32(*self)} }
-
-    /// Round half-way cases toward `INFINITY`
-    #[inline]
-    fn ceil(&self) -> f32 { unsafe{intrinsics::ceilf32(*self)} }
-
-    /// Round half-way cases away from `0.0`
-    #[inline]
-    fn round(&self) -> f32 { unsafe{intrinsics::roundf32(*self)} }
-
-    /// The integer part of the number (rounds towards `0.0`)
-    #[inline]
-    fn trunc(&self) -> f32 { unsafe{intrinsics::truncf32(*self)} }
-
-    /// The fractional part of the number, satisfying:
-    ///
-    /// ```rust
-    /// let x = 1.65f32;
-    /// assert!(x == x.trunc() + x.fract())
-    /// ```
-    #[inline]
-    fn fract(&self) -> f32 { *self - self.trunc() }
-}
-
 impl Bounded for f32 {
     #[inline]
     fn min_value() -> f32 { 1.17549435e-38 }
@@ -277,18 +258,6 @@ impl Bounded for f32 {
 impl Primitive for f32 {}
 
 impl Float for f32 {
-    fn powi(&self, n: i32) -> f32 { unsafe{intrinsics::powif32(*self, n)} }
-
-    #[inline]
-    fn max(self, other: f32) -> f32 {
-        unsafe { cmath::fmaxf(self, other) }
-    }
-
-    #[inline]
-    fn min(self, other: f32) -> f32 {
-        unsafe { cmath::fminf(self, other) }
-    }
-
     #[inline]
     fn nan() -> f32 { 0.0 / 0.0 }
 
@@ -303,33 +272,34 @@ impl Float for f32 {
 
     /// Returns `true` if the number is NaN
     #[inline]
-    fn is_nan(&self) -> bool { *self != *self }
+    fn is_nan(self) -> bool { self != self }
 
     /// Returns `true` if the number is infinite
     #[inline]
-    fn is_infinite(&self) -> bool {
-        *self == Float::infinity() || *self == Float::neg_infinity()
+    fn is_infinite(self) -> bool {
+        self == Float::infinity() || self == Float::neg_infinity()
     }
 
     /// Returns `true` if the number is neither infinite or NaN
     #[inline]
-    fn is_finite(&self) -> bool {
+    fn is_finite(self) -> bool {
         !(self.is_nan() || self.is_infinite())
     }
 
     /// Returns `true` if the number is neither zero, infinite, subnormal or NaN
     #[inline]
-    fn is_normal(&self) -> bool {
+    fn is_normal(self) -> bool {
         self.classify() == FPNormal
     }
 
-    /// Returns the floating point category of the number. If only one property is going to
-    /// be tested, it is generally faster to use the specific predicate instead.
-    fn classify(&self) -> FPCategory {
+    /// Returns the floating point category of the number. If only one property
+    /// is going to be tested, it is generally faster to use the specific
+    /// predicate instead.
+    fn classify(self) -> FPCategory {
         static EXP_MASK: u32 = 0x7f800000;
         static MAN_MASK: u32 = 0x007fffff;
 
-        let bits: u32 = unsafe {::cast::transmute(*self)};
+        let bits: u32 = unsafe { cast::transmute(self) };
         match (bits & MAN_MASK, bits & EXP_MASK) {
             (0, 0)        => FPZero,
             (_, 0)        => FPSubnormal,
@@ -360,48 +330,30 @@ impl Float for f32 {
     #[inline]
     fn max_10_exp(_: Option<f32>) -> int { 38 }
 
-    /// Constructs a floating point number by multiplying `x` by 2 raised to the power of `exp`
+    /// Constructs a floating point number by multiplying `x` by 2 raised to the
+    /// power of `exp`
     #[inline]
-    fn ldexp(x: f32, exp: int) -> f32 { unsafe{cmath::ldexpf(x, exp as c_int)} }
+    fn ldexp(x: f32, exp: int) -> f32 {
+        unsafe { cmath::ldexpf(x, exp as c_int) }
+    }
 
-    /// Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
+    /// Breaks the number into a normalized fraction and a base-2 exponent,
+    /// satisfying:
     ///
     /// - `self = x * pow(2, exp)`
     /// - `0.5 <= abs(x) < 1.0`
     #[inline]
-    fn frexp(&self) -> (f32, int) {
+    fn frexp(self) -> (f32, int) {
         unsafe {
             let mut exp = 0;
-            let x = cmath::frexpf(*self, &mut exp);
+            let x = cmath::frexpf(self, &mut exp);
             (x, exp as int)
         }
     }
 
-    /// Returns the exponential of the number, minus `1`, in a way that is accurate
-    /// even if the number is close to zero
-    #[inline]
-    fn exp_m1(&self) -> f32 { unsafe{cmath::expm1f(*self)} }
-
-    /// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more accurately
-    /// than if the operations were performed separately
-    #[inline]
-    fn ln_1p(&self) -> f32 { unsafe{cmath::log1pf(*self)} }
-
-    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This
-    /// produces a more accurate result with better performance than a separate multiplication
-    /// operation followed by an add.
-    #[inline]
-    fn mul_add(&self, a: f32, b: f32) -> f32 { unsafe{intrinsics::fmaf32(*self, a, b)} }
-
-    /// Returns the next representable floating-point value in the direction of `other`
-    #[inline]
-    fn next_after(&self, other: f32) -> f32 { unsafe{cmath::nextafterf(*self, other)} }
-
     /// Returns the mantissa, exponent and sign as integers.
-    fn integer_decode(&self) -> (u64, i16, i8) {
-        let bits: u32 = unsafe {
-            ::cast::transmute(*self)
-        };
+    fn integer_decode(self) -> (u64, i16, i8) {
+        let bits: u32 = unsafe { cast::transmute(self) };
         let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
         let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
         let mantissa = if exponent == 0 {
@@ -414,45 +366,76 @@ impl Float for f32 {
         (mantissa as u64, exponent, sign)
     }
 
-    /// Archimedes' constant
+    /// Returns the next representable floating-point value in the direction of
+    /// `other`.
     #[inline]
-    fn pi() -> f32 { 3.14159265358979323846264338327950288 }
+    fn next_after(self, other: f32) -> f32 {
+        unsafe { cmath::nextafterf(self, other) }
+    }
 
-    /// 2.0 * pi
+    /// Round half-way cases toward `NEG_INFINITY`
     #[inline]
-    fn two_pi() -> f32 { 6.28318530717958647692528676655900576 }
+    fn floor(self) -> f32 {
+        unsafe { intrinsics::floorf32(self) }
+    }
 
-    /// pi / 2.0
+    /// Round half-way cases toward `INFINITY`
     #[inline]
-    fn frac_pi_2() -> f32 { 1.57079632679489661923132169163975144 }
+    fn ceil(self) -> f32 {
+        unsafe { intrinsics::ceilf32(self) }
+    }
 
-    /// pi / 3.0
+    /// Round half-way cases away from `0.0`
     #[inline]
-    fn frac_pi_3() -> f32 { 1.04719755119659774615421446109316763 }
+    fn round(self) -> f32 {
+        unsafe { intrinsics::roundf32(self) }
+    }
 
-    /// pi / 4.0
+    /// The integer part of the number (rounds towards `0.0`)
     #[inline]
-    fn frac_pi_4() -> f32 { 0.785398163397448309615660845819875721 }
+    fn trunc(self) -> f32 {
+        unsafe { intrinsics::truncf32(self) }
+    }
 
-    /// pi / 6.0
+    /// The fractional part of the number, satisfying:
+    ///
+    /// ```rust
+    /// let x = 1.65f32;
+    /// assert!(x == x.trunc() + x.fract())
+    /// ```
     #[inline]
-    fn frac_pi_6() -> f32 { 0.52359877559829887307710723054658381 }
+    fn fract(self) -> f32 { self - self.trunc() }
 
-    /// pi / 8.0
     #[inline]
-    fn frac_pi_8() -> f32 { 0.39269908169872415480783042290993786 }
+    fn max(self, other: f32) -> f32 {
+        unsafe { cmath::fmaxf(self, other) }
+    }
 
-    /// 1 .0/ pi
     #[inline]
-    fn frac_1_pi() -> f32 { 0.318309886183790671537767526745028724 }
+    fn min(self, other: f32) -> f32 {
+        unsafe { cmath::fminf(self, other) }
+    }
 
-    /// 2.0 / pi
+    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+    /// error. This produces a more accurate result with better performance than
+    /// a separate multiplication operation followed by an add.
     #[inline]
-    fn frac_2_pi() -> f32 { 0.636619772367581343075535053490057448 }
+    fn mul_add(self, a: f32, b: f32) -> f32 {
+        unsafe { intrinsics::fmaf32(self, a, b) }
+    }
 
-    /// 2.0 / sqrt(pi)
+    /// The reciprocal (multiplicative inverse) of the number
     #[inline]
-    fn frac_2_sqrtpi() -> f32 { 1.12837916709551257389615890312154517 }
+    fn recip(self) -> f32 { 1.0 / self }
+
+    fn powi(self, n: i32) -> f32 {
+        unsafe { intrinsics::powif32(self, n) }
+    }
+
+    #[inline]
+    fn powf(self, n: f32) -> f32 {
+        unsafe { intrinsics::powf32(self, n) }
+    }
 
     /// sqrt(2.0)
     #[inline]
@@ -462,104 +445,187 @@ impl Float for f32 {
     #[inline]
     fn frac_1_sqrt2() -> f32 { 0.707106781186547524400844362104849039 }
 
-    /// Euler's number
     #[inline]
-    fn e() -> f32 { 2.71828182845904523536028747135266250 }
+    fn sqrt(self) -> f32 {
+        unsafe { intrinsics::sqrtf32(self) }
+    }
 
-    /// log2(e)
     #[inline]
-    fn log2_e() -> f32 { 1.44269504088896340735992468100189214 }
+    fn rsqrt(self) -> f32 { self.sqrt().recip() }
 
-    /// log10(e)
     #[inline]
-    fn log10_e() -> f32 { 0.434294481903251827651128918916605082 }
+    fn cbrt(self) -> f32 {
+        unsafe { cmath::cbrtf(self) }
+    }
 
-    /// ln(2.0)
     #[inline]
-    fn ln_2() -> f32 { 0.693147180559945309417232121458176568 }
+    fn hypot(self, other: f32) -> f32 {
+        unsafe { cmath::hypotf(self, other) }
+    }
 
-    /// ln(10.0)
+    /// Archimedes' constant
     #[inline]
-    fn ln_10() -> f32 { 2.30258509299404568401799145468436421 }
+    fn pi() -> f32 { 3.14159265358979323846264338327950288 }
 
-    /// The reciprocal (multiplicative inverse) of the number
+    /// 2.0 * pi
     #[inline]
-    fn recip(&self) -> f32 { 1.0 / *self }
+    fn two_pi() -> f32 { 6.28318530717958647692528676655900576 }
 
+    /// pi / 2.0
     #[inline]
-    fn powf(&self, n: &f32) -> f32 { unsafe{intrinsics::powf32(*self, *n)} }
+    fn frac_pi_2() -> f32 { 1.57079632679489661923132169163975144 }
 
+    /// pi / 3.0
     #[inline]
-    fn sqrt(&self) -> f32 { unsafe{intrinsics::sqrtf32(*self)} }
+    fn frac_pi_3() -> f32 { 1.04719755119659774615421446109316763 }
 
+    /// pi / 4.0
     #[inline]
-    fn rsqrt(&self) -> f32 { self.sqrt().recip() }
+    fn frac_pi_4() -> f32 { 0.785398163397448309615660845819875721 }
 
+    /// pi / 6.0
     #[inline]
-    fn cbrt(&self) -> f32 { unsafe{cmath::cbrtf(*self)} }
+    fn frac_pi_6() -> f32 { 0.52359877559829887307710723054658381 }
 
+    /// pi / 8.0
     #[inline]
-    fn hypot(&self, other: &f32) -> f32 { unsafe{cmath::hypotf(*self, *other)} }
+    fn frac_pi_8() -> f32 { 0.39269908169872415480783042290993786 }
 
+    /// 1 .0/ pi
     #[inline]
-    fn sin(&self) -> f32 { unsafe{intrinsics::sinf32(*self)} }
+    fn frac_1_pi() -> f32 { 0.318309886183790671537767526745028724 }
 
+    /// 2.0 / pi
     #[inline]
-    fn cos(&self) -> f32 { unsafe{intrinsics::cosf32(*self)} }
+    fn frac_2_pi() -> f32 { 0.636619772367581343075535053490057448 }
 
+    /// 2.0 / sqrt(pi)
     #[inline]
-    fn tan(&self) -> f32 { unsafe{cmath::tanf(*self)} }
+    fn frac_2_sqrtpi() -> f32 { 1.12837916709551257389615890312154517 }
 
     #[inline]
-    fn asin(&self) -> f32 { unsafe{cmath::asinf(*self)} }
+    fn sin(self) -> f32 {
+        unsafe { intrinsics::sinf32(self) }
+    }
 
     #[inline]
-    fn acos(&self) -> f32 { unsafe{cmath::acosf(*self)} }
+    fn cos(self) -> f32 {
+        unsafe { intrinsics::cosf32(self) }
+    }
 
     #[inline]
-    fn atan(&self) -> f32 { unsafe{cmath::atanf(*self)} }
+    fn tan(self) -> f32 {
+        unsafe { cmath::tanf(self) }
+    }
 
     #[inline]
-    fn atan2(&self, other: &f32) -> f32 { unsafe{cmath::atan2f(*self, *other)} }
+    fn asin(self) -> f32 {
+        unsafe { cmath::asinf(self) }
+    }
+
+    #[inline]
+    fn acos(self) -> f32 {
+        unsafe { cmath::acosf(self) }
+    }
+
+    #[inline]
+    fn atan(self) -> f32 {
+        unsafe { cmath::atanf(self) }
+    }
+
+    #[inline]
+    fn atan2(self, other: f32) -> f32 {
+        unsafe { cmath::atan2f(self, other) }
+    }
 
     /// Simultaneously computes the sine and cosine of the number
     #[inline]
-    fn sin_cos(&self) -> (f32, f32) {
+    fn sin_cos(self) -> (f32, f32) {
         (self.sin(), self.cos())
     }
 
+    /// Euler's number
+    #[inline]
+    fn e() -> f32 { 2.71828182845904523536028747135266250 }
+
+    /// log2(e)
+    #[inline]
+    fn log2_e() -> f32 { 1.44269504088896340735992468100189214 }
+
+    /// log10(e)
+    #[inline]
+    fn log10_e() -> f32 { 0.434294481903251827651128918916605082 }
+
+    /// ln(2.0)
+    #[inline]
+    fn ln_2() -> f32 { 0.693147180559945309417232121458176568 }
+
+    /// ln(10.0)
+    #[inline]
+    fn ln_10() -> f32 { 2.30258509299404568401799145468436421 }
+
     /// Returns the exponential of the number
     #[inline]
-    fn exp(&self) -> f32 { unsafe{intrinsics::expf32(*self)} }
+    fn exp(self) -> f32 {
+        unsafe { intrinsics::expf32(self) }
+    }
 
     /// Returns 2 raised to the power of the number
     #[inline]
-    fn exp2(&self) -> f32 { unsafe{intrinsics::exp2f32(*self)} }
+    fn exp2(self) -> f32 {
+        unsafe { intrinsics::exp2f32(self) }
+    }
+
+    /// Returns the exponential of the number, minus `1`, in a way that is
+    /// accurate even if the number is close to zero
+    #[inline]
+    fn exp_m1(self) -> f32 {
+        unsafe { cmath::expm1f(self) }
+    }
 
     /// Returns the natural logarithm of the number
     #[inline]
-    fn ln(&self) -> f32 { unsafe{intrinsics::logf32(*self)} }
+    fn ln(self) -> f32 {
+        unsafe { intrinsics::logf32(self) }
+    }
 
     /// Returns the logarithm of the number with respect to an arbitrary base
     #[inline]
-    fn log(&self, base: &f32) -> f32 { self.ln() / base.ln() }
+    fn log(self, base: f32) -> f32 { self.ln() / base.ln() }
 
     /// Returns the base 2 logarithm of the number
     #[inline]
-    fn log2(&self) -> f32 { unsafe{intrinsics::log2f32(*self)} }
+    fn log2(self) -> f32 {
+        unsafe { intrinsics::log2f32(self) }
+    }
 
     /// Returns the base 10 logarithm of the number
     #[inline]
-    fn log10(&self) -> f32 { unsafe{intrinsics::log10f32(*self)} }
+    fn log10(self) -> f32 {
+        unsafe { intrinsics::log10f32(self) }
+    }
+
+    /// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more
+    /// accurately than if the operations were performed separately
+    #[inline]
+    fn ln_1p(self) -> f32 {
+        unsafe { cmath::log1pf(self) }
+    }
 
     #[inline]
-    fn sinh(&self) -> f32 { unsafe{cmath::sinhf(*self)} }
+    fn sinh(self) -> f32 {
+        unsafe { cmath::sinhf(self) }
+    }
 
     #[inline]
-    fn cosh(&self) -> f32 { unsafe{cmath::coshf(*self)} }
+    fn cosh(self) -> f32 {
+        unsafe { cmath::coshf(self) }
+    }
 
     #[inline]
-    fn tanh(&self) -> f32 { unsafe{cmath::tanhf(*self)} }
+    fn tanh(self) -> f32 {
+        unsafe { cmath::tanhf(self) }
+    }
 
     /// Inverse hyperbolic sine
     ///
@@ -569,8 +635,8 @@ impl Float for f32 {
     /// - `self` if `self` is `0.0`, `-0.0`, `INFINITY`, or `NEG_INFINITY`
     /// - `NAN` if `self` is `NAN`
     #[inline]
-    fn asinh(&self) -> f32 {
-        match *self {
+    fn asinh(self) -> f32 {
+        match self {
             NEG_INFINITY => NEG_INFINITY,
             x => (x + ((x * x) + 1.0).sqrt()).ln(),
         }
@@ -584,8 +650,8 @@ impl Float for f32 {
     /// - `INFINITY` if `self` is `INFINITY`
     /// - `NAN` if `self` is `NAN` or `self < 1.0` (including `NEG_INFINITY`)
     #[inline]
-    fn acosh(&self) -> f32 {
-        match *self {
+    fn acosh(self) -> f32 {
+        match self {
             x if x < 1.0 => Float::nan(),
             x => (x + ((x * x) - 1.0).sqrt()).ln(),
         }
@@ -602,19 +668,19 @@ impl Float for f32 {
     /// - `NAN` if the `self` is `NAN` or outside the domain of `-1.0 <= self <= 1.0`
     ///   (including `INFINITY` and `NEG_INFINITY`)
     #[inline]
-    fn atanh(&self) -> f32 {
-        0.5 * ((2.0 * *self) / (1.0 - *self)).ln_1p()
+    fn atanh(self) -> f32 {
+        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
     }
 
     /// Converts to degrees, assuming the number is in radians
     #[inline]
-    fn to_degrees(&self) -> f32 { *self * (180.0f32 / Float::pi()) }
+    fn to_degrees(self) -> f32 { self * (180.0f32 / Float::pi()) }
 
     /// Converts to radians, assuming the number is in degrees
     #[inline]
-    fn to_radians(&self) -> f32 {
+    fn to_radians(self) -> f32 {
         let value: f32 = Float::pi();
-        *self * (value / 180.0f32)
+        self * (value / 180.0f32)
     }
 }
 
@@ -1164,7 +1230,7 @@ mod tests {
     fn test_integer_decode() {
         assert_eq!(3.14159265359f32.integer_decode(), (13176795u64, -22i16, 1i8));
         assert_eq!((-8573.5918555f32).integer_decode(), (8779358u64, -10i16, -1i8));
-        assert_eq!(2f32.powf(&100.0).integer_decode(), (8388608u64, 77i16, 1i8));
+        assert_eq!(2f32.powf(100.0).integer_decode(), (8388608u64, 77i16, 1i8));
         assert_eq!(0f32.integer_decode(), (0u64, -150i16, 1i8));
         assert_eq!((-0f32).integer_decode(), (0u64, -150i16, -1i8));
         assert_eq!(INFINITY.integer_decode(), (8388608u64, 105i16, 1i8));
diff --git a/src/libstd/num/f64.rs b/src/libstd/num/f64.rs
index 8b52a6747f478..a2b63968569b4 100644
--- a/src/libstd/num/f64.rs
+++ b/src/libstd/num/f64.rs
@@ -14,6 +14,7 @@
 
 use prelude::*;
 
+use cast;
 use default::Default;
 use from_str::FromStr;
 use libc::{c_int};
@@ -221,12 +222,16 @@ impl Neg<f64> for f64 {
 impl Signed for f64 {
     /// Computes the absolute value. Returns `NAN` if the number is `NAN`.
     #[inline]
-    fn abs(&self) -> f64 { unsafe{intrinsics::fabsf64(*self)} }
+    fn abs(&self) -> f64 {
+        unsafe { intrinsics::fabsf64(*self) }
+    }
 
     /// The positive difference of two numbers. Returns `0.0` if the number is less than or
     /// equal to `other`, otherwise the difference between`self` and `other` is returned.
     #[inline]
-    fn abs_sub(&self, other: &f64) -> f64 { unsafe{cmath::fdim(*self, *other)} }
+    fn abs_sub(&self, other: &f64) -> f64 {
+        unsafe { cmath::fdim(*self, *other) }
+    }
 
     /// # Returns
     ///
@@ -235,7 +240,9 @@ impl Signed for f64 {
     /// - `NAN` if the number is NaN
     #[inline]
     fn signum(&self) -> f64 {
-        if self.is_nan() { NAN } else { unsafe{intrinsics::copysignf64(1.0, *self)} }
+        if self.is_nan() { NAN } else {
+            unsafe { intrinsics::copysignf64(1.0, *self) }
+        }
     }
 
     /// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
@@ -247,33 +254,6 @@ impl Signed for f64 {
     fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == NEG_INFINITY }
 }
 
-impl Round for f64 {
-    /// Round half-way cases toward `NEG_INFINITY`
-    #[inline]
-    fn floor(&self) -> f64 { unsafe{intrinsics::floorf64(*self)} }
-
-    /// Round half-way cases toward `INFINITY`
-    #[inline]
-    fn ceil(&self) -> f64 { unsafe{intrinsics::ceilf64(*self)} }
-
-    /// Round half-way cases away from `0.0`
-    #[inline]
-    fn round(&self) -> f64 { unsafe{intrinsics::roundf64(*self)} }
-
-    /// The integer part of the number (rounds towards `0.0`)
-    #[inline]
-    fn trunc(&self) -> f64 { unsafe{intrinsics::truncf64(*self)} }
-
-    /// The fractional part of the number, satisfying:
-    ///
-    /// ```rust
-    /// let x = 1.65f64;
-    /// assert!(x == x.trunc() + x.fract())
-    /// ```
-    #[inline]
-    fn fract(&self) -> f64 { *self - self.trunc() }
-}
-
 impl Bounded for f64 {
     #[inline]
     fn min_value() -> f64 { 2.2250738585072014e-308 }
@@ -285,16 +265,6 @@ impl Bounded for f64 {
 impl Primitive for f64 {}
 
 impl Float for f64 {
-    #[inline]
-    fn max(self, other: f64) -> f64 {
-        unsafe { cmath::fmax(self, other) }
-    }
-
-    #[inline]
-    fn min(self, other: f64) -> f64 {
-        unsafe { cmath::fmin(self, other) }
-    }
-
     #[inline]
     fn nan() -> f64 { 0.0 / 0.0 }
 
@@ -309,33 +279,34 @@ impl Float for f64 {
 
     /// Returns `true` if the number is NaN
     #[inline]
-    fn is_nan(&self) -> bool { *self != *self }
+    fn is_nan(self) -> bool { self != self }
 
     /// Returns `true` if the number is infinite
     #[inline]
-    fn is_infinite(&self) -> bool {
-        *self == Float::infinity() || *self == Float::neg_infinity()
+    fn is_infinite(self) -> bool {
+        self == Float::infinity() || self == Float::neg_infinity()
     }
 
     /// Returns `true` if the number is neither infinite or NaN
     #[inline]
-    fn is_finite(&self) -> bool {
+    fn is_finite(self) -> bool {
         !(self.is_nan() || self.is_infinite())
     }
 
     /// Returns `true` if the number is neither zero, infinite, subnormal or NaN
     #[inline]
-    fn is_normal(&self) -> bool {
+    fn is_normal(self) -> bool {
         self.classify() == FPNormal
     }
 
-    /// Returns the floating point category of the number. If only one property is going to
-    /// be tested, it is generally faster to use the specific predicate instead.
-    fn classify(&self) -> FPCategory {
+    /// Returns the floating point category of the number. If only one property
+    /// is going to be tested, it is generally faster to use the specific
+    /// predicate instead.
+    fn classify(self) -> FPCategory {
         static EXP_MASK: u64 = 0x7ff0000000000000;
         static MAN_MASK: u64 = 0x000fffffffffffff;
 
-        let bits: u64 = unsafe {::cast::transmute(*self)};
+        let bits: u64 = unsafe { cast::transmute(self) };
         match (bits & MAN_MASK, bits & EXP_MASK) {
             (0, 0)        => FPZero,
             (_, 0)        => FPSubnormal,
@@ -366,48 +337,30 @@ impl Float for f64 {
     #[inline]
     fn max_10_exp(_: Option<f64>) -> int { 308 }
 
-    /// Constructs a floating point number by multiplying `x` by 2 raised to the power of `exp`
+    /// Constructs a floating point number by multiplying `x` by 2 raised to the
+    /// power of `exp`
     #[inline]
-    fn ldexp(x: f64, exp: int) -> f64 { unsafe{cmath::ldexp(x, exp as c_int)} }
+    fn ldexp(x: f64, exp: int) -> f64 {
+        unsafe { cmath::ldexp(x, exp as c_int) }
+    }
 
-    /// Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
+    /// Breaks the number into a normalized fraction and a base-2 exponent,
+    /// satisfying:
     ///
     /// - `self = x * pow(2, exp)`
     /// - `0.5 <= abs(x) < 1.0`
     #[inline]
-    fn frexp(&self) -> (f64, int) {
+    fn frexp(self) -> (f64, int) {
         unsafe {
             let mut exp = 0;
-            let x = cmath::frexp(*self, &mut exp);
+            let x = cmath::frexp(self, &mut exp);
             (x, exp as int)
         }
     }
 
-    /// Returns the exponential of the number, minus `1`, in a way that is accurate
-    /// even if the number is close to zero
-    #[inline]
-    fn exp_m1(&self) -> f64 { unsafe{cmath::expm1(*self)} }
-
-    /// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more accurately
-    /// than if the operations were performed separately
-    #[inline]
-    fn ln_1p(&self) -> f64 { unsafe{cmath::log1p(*self)} }
-
-    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This
-    /// produces a more accurate result with better performance than a separate multiplication
-    /// operation followed by an add.
-    #[inline]
-    fn mul_add(&self, a: f64, b: f64) -> f64 { unsafe{intrinsics::fmaf64(*self, a, b)} }
-
-    /// Returns the next representable floating-point value in the direction of `other`
-    #[inline]
-    fn next_after(&self, other: f64) -> f64 { unsafe{cmath::nextafter(*self, other)} }
-
     /// Returns the mantissa, exponent and sign as integers.
-    fn integer_decode(&self) -> (u64, i16, i8) {
-        let bits: u64 = unsafe {
-            ::cast::transmute(*self)
-        };
+    fn integer_decode(self) -> (u64, i16, i8) {
+        let bits: u64 = unsafe { cast::transmute(self) };
         let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
         let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
         let mantissa = if exponent == 0 {
@@ -420,45 +373,77 @@ impl Float for f64 {
         (mantissa, exponent, sign)
     }
 
-    /// Archimedes' constant
+    /// Returns the next representable floating-point value in the direction of
+    /// `other`.
     #[inline]
-    fn pi() -> f64 { 3.14159265358979323846264338327950288 }
+    fn next_after(self, other: f64) -> f64 {
+        unsafe { cmath::nextafter(self, other) }
+    }
 
-    /// 2.0 * pi
+    /// Round half-way cases toward `NEG_INFINITY`
     #[inline]
-    fn two_pi() -> f64 { 6.28318530717958647692528676655900576 }
+    fn floor(self) -> f64 {
+        unsafe { intrinsics::floorf64(self) }
+    }
 
-    /// pi / 2.0
+    /// Round half-way cases toward `INFINITY`
     #[inline]
-    fn frac_pi_2() -> f64 { 1.57079632679489661923132169163975144 }
+    fn ceil(self) -> f64 {
+        unsafe { intrinsics::ceilf64(self) }
+    }
 
-    /// pi / 3.0
+    /// Round half-way cases away from `0.0`
     #[inline]
-    fn frac_pi_3() -> f64 { 1.04719755119659774615421446109316763 }
+    fn round(self) -> f64 {
+        unsafe { intrinsics::roundf64(self) }
+    }
 
-    /// pi / 4.0
+    /// The integer part of the number (rounds towards `0.0`)
     #[inline]
-    fn frac_pi_4() -> f64 { 0.785398163397448309615660845819875721 }
+    fn trunc(self) -> f64 {
+        unsafe { intrinsics::truncf64(self) }
+    }
 
-    /// pi / 6.0
+    /// The fractional part of the number, satisfying:
+    ///
+    /// ```rust
+    /// let x = 1.65f64;
+    /// assert!(x == x.trunc() + x.fract())
+    /// ```
     #[inline]
-    fn frac_pi_6() -> f64 { 0.52359877559829887307710723054658381 }
+    fn fract(self) -> f64 { self - self.trunc() }
 
-    /// pi / 8.0
     #[inline]
-    fn frac_pi_8() -> f64 { 0.39269908169872415480783042290993786 }
+    fn max(self, other: f64) -> f64 {
+        unsafe { cmath::fmax(self, other) }
+    }
 
-    /// 1.0 / pi
     #[inline]
-    fn frac_1_pi() -> f64 { 0.318309886183790671537767526745028724 }
+    fn min(self, other: f64) -> f64 {
+        unsafe { cmath::fmin(self, other) }
+    }
 
-    /// 2.0 / pi
+    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+    /// error. This produces a more accurate result with better performance than
+    /// a separate multiplication operation followed by an add.
     #[inline]
-    fn frac_2_pi() -> f64 { 0.636619772367581343075535053490057448 }
+    fn mul_add(self, a: f64, b: f64) -> f64 {
+        unsafe { intrinsics::fmaf64(self, a, b) }
+    }
 
-    /// 2.0 / sqrt(pi)
+    /// The reciprocal (multiplicative inverse) of the number
     #[inline]
-    fn frac_2_sqrtpi() -> f64 { 1.12837916709551257389615890312154517 }
+    fn recip(self) -> f64 { 1.0 / self }
+
+    #[inline]
+    fn powf(self, n: f64) -> f64 {
+        unsafe { intrinsics::powf64(self, n) }
+    }
+
+    #[inline]
+    fn powi(self, n: i32) -> f64 {
+        unsafe { intrinsics::powif64(self, n) }
+    }
 
     /// sqrt(2.0)
     #[inline]
@@ -468,107 +453,187 @@ impl Float for f64 {
     #[inline]
     fn frac_1_sqrt2() -> f64 { 0.707106781186547524400844362104849039 }
 
-    /// Euler's number
     #[inline]
-    fn e() -> f64 { 2.71828182845904523536028747135266250 }
+    fn sqrt(self) -> f64 {
+        unsafe { intrinsics::sqrtf64(self) }
+    }
 
-    /// log2(e)
     #[inline]
-    fn log2_e() -> f64 { 1.44269504088896340735992468100189214 }
+    fn rsqrt(self) -> f64 { self.sqrt().recip() }
 
-    /// log10(e)
     #[inline]
-    fn log10_e() -> f64 { 0.434294481903251827651128918916605082 }
+    fn cbrt(self) -> f64 {
+        unsafe { cmath::cbrt(self) }
+    }
 
-    /// ln(2.0)
     #[inline]
-    fn ln_2() -> f64 { 0.693147180559945309417232121458176568 }
+    fn hypot(self, other: f64) -> f64 {
+        unsafe { cmath::hypot(self, other) }
+    }
 
-    /// ln(10.0)
+    /// Archimedes' constant
     #[inline]
-    fn ln_10() -> f64 { 2.30258509299404568401799145468436421 }
+    fn pi() -> f64 { 3.14159265358979323846264338327950288 }
 
-    /// The reciprocal (multiplicative inverse) of the number
+    /// 2.0 * pi
     #[inline]
-    fn recip(&self) -> f64 { 1.0 / *self }
+    fn two_pi() -> f64 { 6.28318530717958647692528676655900576 }
 
+    /// pi / 2.0
     #[inline]
-    fn powf(&self, n: &f64) -> f64 { unsafe{intrinsics::powf64(*self, *n)} }
+    fn frac_pi_2() -> f64 { 1.57079632679489661923132169163975144 }
 
+    /// pi / 3.0
     #[inline]
-    fn powi(&self, n: i32) -> f64 { unsafe{intrinsics::powif64(*self, n)} }
+    fn frac_pi_3() -> f64 { 1.04719755119659774615421446109316763 }
 
+    /// pi / 4.0
     #[inline]
-    fn sqrt(&self) -> f64 { unsafe{intrinsics::sqrtf64(*self)} }
+    fn frac_pi_4() -> f64 { 0.785398163397448309615660845819875721 }
 
+    /// pi / 6.0
     #[inline]
-    fn rsqrt(&self) -> f64 { self.sqrt().recip() }
+    fn frac_pi_6() -> f64 { 0.52359877559829887307710723054658381 }
 
+    /// pi / 8.0
+    #[inline]
+    fn frac_pi_8() -> f64 { 0.39269908169872415480783042290993786 }
+
+    /// 1.0 / pi
     #[inline]
-    fn cbrt(&self) -> f64 { unsafe{cmath::cbrt(*self)} }
+    fn frac_1_pi() -> f64 { 0.318309886183790671537767526745028724 }
+
+    /// 2.0 / pi
+    #[inline]
+    fn frac_2_pi() -> f64 { 0.636619772367581343075535053490057448 }
 
+    /// 2.0 / sqrt(pi)
     #[inline]
-    fn hypot(&self, other: &f64) -> f64 { unsafe{cmath::hypot(*self, *other)} }
+    fn frac_2_sqrtpi() -> f64 { 1.12837916709551257389615890312154517 }
 
     #[inline]
-    fn sin(&self) -> f64 { unsafe{intrinsics::sinf64(*self)} }
+    fn sin(self) -> f64 {
+        unsafe { intrinsics::sinf64(self) }
+    }
 
     #[inline]
-    fn cos(&self) -> f64 { unsafe{intrinsics::cosf64(*self)} }
+    fn cos(self) -> f64 {
+        unsafe { intrinsics::cosf64(self) }
+    }
 
     #[inline]
-    fn tan(&self) -> f64 { unsafe{cmath::tan(*self)} }
+    fn tan(self) -> f64 {
+        unsafe { cmath::tan(self) }
+    }
 
     #[inline]
-    fn asin(&self) -> f64 { unsafe{cmath::asin(*self)} }
+    fn asin(self) -> f64 {
+        unsafe { cmath::asin(self) }
+    }
 
     #[inline]
-    fn acos(&self) -> f64 { unsafe{cmath::acos(*self)} }
+    fn acos(self) -> f64 {
+        unsafe { cmath::acos(self) }
+    }
 
     #[inline]
-    fn atan(&self) -> f64 { unsafe{cmath::atan(*self)} }
+    fn atan(self) -> f64 {
+        unsafe { cmath::atan(self) }
+    }
 
     #[inline]
-    fn atan2(&self, other: &f64) -> f64 { unsafe{cmath::atan2(*self, *other)} }
+    fn atan2(self, other: f64) -> f64 {
+        unsafe { cmath::atan2(self, other) }
+    }
 
     /// Simultaneously computes the sine and cosine of the number
     #[inline]
-    fn sin_cos(&self) -> (f64, f64) {
+    fn sin_cos(self) -> (f64, f64) {
         (self.sin(), self.cos())
     }
 
+    /// Euler's number
+    #[inline]
+    fn e() -> f64 { 2.71828182845904523536028747135266250 }
+
+    /// log2(e)
+    #[inline]
+    fn log2_e() -> f64 { 1.44269504088896340735992468100189214 }
+
+    /// log10(e)
+    #[inline]
+    fn log10_e() -> f64 { 0.434294481903251827651128918916605082 }
+
+    /// ln(2.0)
+    #[inline]
+    fn ln_2() -> f64 { 0.693147180559945309417232121458176568 }
+
+    /// ln(10.0)
+    #[inline]
+    fn ln_10() -> f64 { 2.30258509299404568401799145468436421 }
+
     /// Returns the exponential of the number
     #[inline]
-    fn exp(&self) -> f64 { unsafe{intrinsics::expf64(*self)} }
+    fn exp(self) -> f64 {
+        unsafe { intrinsics::expf64(self) }
+    }
 
     /// Returns 2 raised to the power of the number
     #[inline]
-    fn exp2(&self) -> f64 { unsafe{intrinsics::exp2f64(*self)} }
+    fn exp2(self) -> f64 {
+        unsafe { intrinsics::exp2f64(self) }
+    }
+
+    /// Returns the exponential of the number, minus `1`, in a way that is
+    /// accurate even if the number is close to zero
+    #[inline]
+    fn exp_m1(self) -> f64 {
+        unsafe { cmath::expm1(self) }
+    }
 
     /// Returns the natural logarithm of the number
     #[inline]
-    fn ln(&self) -> f64 { unsafe{intrinsics::logf64(*self)} }
+    fn ln(self) -> f64 {
+        unsafe { intrinsics::logf64(self) }
+    }
 
     /// Returns the logarithm of the number with respect to an arbitrary base
     #[inline]
-    fn log(&self, base: &f64) -> f64 { self.ln() / base.ln() }
+    fn log(self, base: f64) -> f64 { self.ln() / base.ln() }
 
     /// Returns the base 2 logarithm of the number
     #[inline]
-    fn log2(&self) -> f64 { unsafe{intrinsics::log2f64(*self)} }
+    fn log2(self) -> f64 {
+        unsafe { intrinsics::log2f64(self) }
+    }
 
     /// Returns the base 10 logarithm of the number
     #[inline]
-    fn log10(&self) -> f64 { unsafe{intrinsics::log10f64(*self)} }
+    fn log10(self) -> f64 {
+        unsafe { intrinsics::log10f64(self) }
+    }
+
+    /// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more
+    /// accurately than if the operations were performed separately
+    #[inline]
+    fn ln_1p(self) -> f64 {
+        unsafe { cmath::log1p(self) }
+    }
 
     #[inline]
-    fn sinh(&self) -> f64 { unsafe{cmath::sinh(*self)} }
+    fn sinh(self) -> f64 {
+        unsafe { cmath::sinh(self) }
+    }
 
     #[inline]
-    fn cosh(&self) -> f64 { unsafe{cmath::cosh(*self)} }
+    fn cosh(self) -> f64 {
+        unsafe { cmath::cosh(self) }
+    }
 
     #[inline]
-    fn tanh(&self) -> f64 { unsafe{cmath::tanh(*self)} }
+    fn tanh(self) -> f64 {
+        unsafe { cmath::tanh(self) }
+    }
 
     /// Inverse hyperbolic sine
     ///
@@ -578,8 +643,8 @@ impl Float for f64 {
     /// - `self` if `self` is `0.0`, `-0.0`, `INFINITY`, or `NEG_INFINITY`
     /// - `NAN` if `self` is `NAN`
     #[inline]
-    fn asinh(&self) -> f64 {
-        match *self {
+    fn asinh(self) -> f64 {
+        match self {
             NEG_INFINITY => NEG_INFINITY,
             x => (x + ((x * x) + 1.0).sqrt()).ln(),
         }
@@ -593,8 +658,8 @@ impl Float for f64 {
     /// - `INFINITY` if `self` is `INFINITY`
     /// - `NAN` if `self` is `NAN` or `self < 1.0` (including `NEG_INFINITY`)
     #[inline]
-    fn acosh(&self) -> f64 {
-        match *self {
+    fn acosh(self) -> f64 {
+        match self {
             x if x < 1.0 => Float::nan(),
             x => (x + ((x * x) - 1.0).sqrt()).ln(),
         }
@@ -611,19 +676,19 @@ impl Float for f64 {
     /// - `NAN` if the `self` is `NAN` or outside the domain of `-1.0 <= self <= 1.0`
     ///   (including `INFINITY` and `NEG_INFINITY`)
     #[inline]
-    fn atanh(&self) -> f64 {
-        0.5 * ((2.0 * *self) / (1.0 - *self)).ln_1p()
+    fn atanh(self) -> f64 {
+        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
     }
 
     /// Converts to degrees, assuming the number is in radians
     #[inline]
-    fn to_degrees(&self) -> f64 { *self * (180.0f64 / Float::pi()) }
+    fn to_degrees(self) -> f64 { self * (180.0f64 / Float::pi()) }
 
     /// Converts to radians, assuming the number is in degrees
     #[inline]
-    fn to_radians(&self) -> f64 {
+    fn to_radians(self) -> f64 {
         let value: f64 = Float::pi();
-        *self * (value / 180.0)
+        self * (value / 180.0)
     }
 }
 
@@ -1167,7 +1232,7 @@ mod tests {
     fn test_integer_decode() {
         assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906u64, -51i16, 1i8));
         assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931u64, -39i16, -1i8));
-        assert_eq!(2f64.powf(&100.0).integer_decode(), (4503599627370496u64, 48i16, 1i8));
+        assert_eq!(2f64.powf(100.0).integer_decode(), (4503599627370496u64, 48i16, 1i8));
         assert_eq!(0f64.integer_decode(), (0u64, -1075i16, 1i8));
         assert_eq!((-0f64).integer_decode(), (0u64, -1075i16, -1i8));
         assert_eq!(INFINITY.integer_decode(), (4503599627370496u64, 972i16, 1i8));
diff --git a/src/libstd/num/mod.rs b/src/libstd/num/mod.rs
index 12befed743a52..75cf02034b992 100644
--- a/src/libstd/num/mod.rs
+++ b/src/libstd/num/mod.rs
@@ -162,25 +162,6 @@ pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
 /// A trait for values which cannot be negative
 pub trait Unsigned: Num {}
 
-/// A collection of rounding operations.
-pub trait Round {
-    /// Return the largest integer less than or equal to a number.
-    fn floor(&self) -> Self;
-
-    /// Return the smallest integer greater than or equal to a number.
-    fn ceil(&self) -> Self;
-
-    /// Return the nearest integer to a number. Round half-way cases away from
-    /// `0.0`.
-    fn round(&self) -> Self;
-
-    /// Return the integer part of a number.
-    fn trunc(&self) -> Self;
-
-    /// Return the fractional part of a number.
-    fn fract(&self) -> Self;
-}
-
 /// Raises a value to the power of exp, using exponentiation by squaring.
 ///
 /// # Example
@@ -347,217 +328,199 @@ pub enum FPCategory {
 //
 // FIXME(#8888): Several of these functions have a parameter named
 //               `unused_self`. Removing it requires #8888 to be fixed.
-pub trait Float: Signed + Round + Primitive {
-    /// Returns the maximum of the two numbers.
-    fn max(self, other: Self) -> Self;
-    /// Returns the minimum of the two numbers.
-    fn min(self, other: Self) -> Self;
-
+pub trait Float: Signed + Primitive {
     /// Returns the NaN value.
     fn nan() -> Self;
-
     /// Returns the infinite value.
     fn infinity() -> Self;
-
     /// Returns the negative infinite value.
     fn neg_infinity() -> Self;
-
     /// Returns -0.0.
     fn neg_zero() -> Self;
 
     /// Returns true if this value is NaN and false otherwise.
-    fn is_nan(&self) -> bool;
-
-    /// Returns true if this value is positive infinity or negative infinity and false otherwise.
-    fn is_infinite(&self) -> bool;
-
+    fn is_nan(self) -> bool;
+    /// Returns true if this value is positive infinity or negative infinity and
+    /// false otherwise.
+    fn is_infinite(self) -> bool;
     /// Returns true if this number is neither infinite nor NaN.
-    fn is_finite(&self) -> bool;
-
+    fn is_finite(self) -> bool;
     /// Returns true if this number is neither zero, infinite, denormal, or NaN.
-    fn is_normal(&self) -> bool;
-
+    fn is_normal(self) -> bool;
     /// Returns the category that this number falls into.
-    fn classify(&self) -> FPCategory;
+    fn classify(self) -> FPCategory;
 
     /// Returns the number of binary digits of mantissa that this type supports.
     fn mantissa_digits(unused_self: Option<Self>) -> uint;
-
     /// Returns the number of binary digits of exponent that this type supports.
     fn digits(unused_self: Option<Self>) -> uint;
-
     /// Returns the smallest positive number that this type can represent.
     fn epsilon() -> Self;
-
     /// Returns the minimum binary exponent that this type can represent.
     fn min_exp(unused_self: Option<Self>) -> int;
-
     /// Returns the maximum binary exponent that this type can represent.
     fn max_exp(unused_self: Option<Self>) -> int;
-
     /// Returns the minimum base-10 exponent that this type can represent.
     fn min_10_exp(unused_self: Option<Self>) -> int;
-
     /// Returns the maximum base-10 exponent that this type can represent.
     fn max_10_exp(unused_self: Option<Self>) -> int;
 
-    /// Constructs a floating point number created by multiplying `x` by 2 raised to the power of
-    /// `exp`.
+    /// Constructs a floating point number created by multiplying `x` by 2
+    /// raised to the power of `exp`.
     fn ldexp(x: Self, exp: int) -> Self;
-
-    /// Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
+    /// Breaks the number into a normalized fraction and a base-2 exponent,
+    /// satisfying:
     ///
     ///  * `self = x * pow(2, exp)`
     ///
     ///  * `0.5 <= abs(x) < 1.0`
-    fn frexp(&self) -> (Self, int);
+    fn frexp(self) -> (Self, int);
+    /// Returns the mantissa, exponent and sign as integers, respectively.
+    fn integer_decode(self) -> (u64, i16, i8);
+
+    /// Returns the next representable floating-point value in the direction of
+    /// `other`.
+    fn next_after(self, other: Self) -> Self;
+
+    /// Return the largest integer less than or equal to a number.
+    fn floor(self) -> Self;
+    /// Return the smallest integer greater than or equal to a number.
+    fn ceil(self) -> Self;
+    /// Return the nearest integer to a number. Round half-way cases away from
+    /// `0.0`.
+    fn round(self) -> Self;
+    /// Return the integer part of a number.
+    fn trunc(self) -> Self;
+    /// Return the fractional part of a number.
+    fn fract(self) -> Self;
 
-    /// Returns the exponential of the number, minus 1, in a way that is accurate even if the
-    /// number is close to zero.
-    fn exp_m1(&self) -> Self;
+    /// Returns the maximum of the two numbers.
+    fn max(self, other: Self) -> Self;
+    /// Returns the minimum of the two numbers.
+    fn min(self, other: Self) -> Self;
 
-    /// Returns the natural logarithm of the number plus 1 (`ln(1+n)`) more accurately than if the
-    /// operations were performed separately.
-    fn ln_1p(&self) -> Self;
+    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+    /// error. This produces a more accurate result with better performance than
+    /// a separate multiplication operation followed by an add.
+    fn mul_add(self, a: Self, b: Self) -> Self;
+    /// Take the reciprocal (inverse) of a number, `1/x`.
+    fn recip(self) -> Self;
 
-    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This produces a
-    /// more accurate result with better performance than a separate multiplication operation
-    /// followed by an add.
-    fn mul_add(&self, a: Self, b: Self) -> Self;
+    /// Raise a number to an integer power.
+    ///
+    /// Using this function is generally faster than using `powf`
+    fn powi(self, n: i32) -> Self;
+    /// Raise a number to a floating point power.
+    fn powf(self, n: Self) -> Self;
 
-    /// Returns the next representable floating-point value in the direction of `other`.
-    fn next_after(&self, other: Self) -> Self;
+    /// sqrt(2.0).
+    fn sqrt2() -> Self;
+    /// 1.0 / sqrt(2.0).
+    fn frac_1_sqrt2() -> Self;
 
-    /// Returns the mantissa, exponent and sign as integers, respectively.
-    fn integer_decode(&self) -> (u64, i16, i8);
+    /// Take the square root of a number.
+    fn sqrt(self) -> Self;
+    /// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
+    fn rsqrt(self) -> Self;
+    /// Take the cubic root of a number.
+    fn cbrt(self) -> Self;
+    /// Calculate the length of the hypotenuse of a right-angle triangle given
+    /// legs of length `x` and `y`.
+    fn hypot(self, other: Self) -> Self;
 
     /// Archimedes' constant.
     fn pi() -> Self;
-
     /// 2.0 * pi.
     fn two_pi() -> Self;
-
     /// pi / 2.0.
     fn frac_pi_2() -> Self;
-
     /// pi / 3.0.
     fn frac_pi_3() -> Self;
-
     /// pi / 4.0.
     fn frac_pi_4() -> Self;
-
     /// pi / 6.0.
     fn frac_pi_6() -> Self;
-
     /// pi / 8.0.
     fn frac_pi_8() -> Self;
-
     /// 1.0 / pi.
     fn frac_1_pi() -> Self;
-
     /// 2.0 / pi.
     fn frac_2_pi() -> Self;
-
     /// 2.0 / sqrt(pi).
     fn frac_2_sqrtpi() -> Self;
 
-    /// sqrt(2.0).
-    fn sqrt2() -> Self;
-
-    /// 1.0 / sqrt(2.0).
-    fn frac_1_sqrt2() -> Self;
-
-    /// Euler's number.
-    fn e() -> Self;
-
-    /// log2(e).
-    fn log2_e() -> Self;
-
-    /// log10(e).
-    fn log10_e() -> Self;
-
-    /// ln(2.0).
-    fn ln_2() -> Self;
-
-    /// ln(10.0).
-    fn ln_10() -> Self;
-
-    /// Take the reciprocal (inverse) of a number, `1/x`.
-    fn recip(&self) -> Self;
-
-    /// Raise a number to a power.
-    fn powf(&self, n: &Self) -> Self;
-
-    /// Raise a number to an integer power.
-    ///
-    /// Using this function is generally faster than using `powf`
-    fn powi(&self, n: i32) -> Self;
-
-    /// Take the square root of a number.
-    fn sqrt(&self) -> Self;
-    /// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
-    fn rsqrt(&self) -> Self;
-    /// Take the cubic root of a number.
-    fn cbrt(&self) -> Self;
-    /// Calculate the length of the hypotenuse of a right-angle triangle given
-    /// legs of length `x` and `y`.
-    fn hypot(&self, other: &Self) -> Self;
-
     /// Computes the sine of a number (in radians).
-    fn sin(&self) -> Self;
+    fn sin(self) -> Self;
     /// Computes the cosine of a number (in radians).
-    fn cos(&self) -> Self;
+    fn cos(self) -> Self;
     /// Computes the tangent of a number (in radians).
-    fn tan(&self) -> Self;
+    fn tan(self) -> Self;
 
     /// Computes the arcsine of a number. Return value is in radians in
     /// the range [-pi/2, pi/2] or NaN if the number is outside the range
     /// [-1, 1].
-    fn asin(&self) -> Self;
+    fn asin(self) -> Self;
     /// Computes the arccosine of a number. Return value is in radians in
     /// the range [0, pi] or NaN if the number is outside the range
     /// [-1, 1].
-    fn acos(&self) -> Self;
+    fn acos(self) -> Self;
     /// Computes the arctangent of a number. Return value is in radians in the
     /// range [-pi/2, pi/2];
-    fn atan(&self) -> Self;
+    fn atan(self) -> Self;
     /// Computes the four quadrant arctangent of a number, `y`, and another
     /// number `x`. Return value is in radians in the range [-pi, pi].
-    fn atan2(&self, other: &Self) -> Self;
+    fn atan2(self, other: Self) -> Self;
     /// Simultaneously computes the sine and cosine of the number, `x`. Returns
     /// `(sin(x), cos(x))`.
-    fn sin_cos(&self) -> (Self, Self);
+    fn sin_cos(self) -> (Self, Self);
+
+    /// Euler's number.
+    fn e() -> Self;
+    /// log2(e).
+    fn log2_e() -> Self;
+    /// log10(e).
+    fn log10_e() -> Self;
+    /// ln(2.0).
+    fn ln_2() -> Self;
+    /// ln(10.0).
+    fn ln_10() -> Self;
 
     /// Returns `e^(self)`, (the exponential function).
-    fn exp(&self) -> Self;
+    fn exp(self) -> Self;
     /// Returns 2 raised to the power of the number, `2^(self)`.
-    fn exp2(&self) -> Self;
+    fn exp2(self) -> Self;
+    /// Returns the exponential of the number, minus 1, in a way that is
+    /// accurate even if the number is close to zero.
+    fn exp_m1(self) -> Self;
     /// Returns the natural logarithm of the number.
-    fn ln(&self) -> Self;
+    fn ln(self) -> Self;
     /// Returns the logarithm of the number with respect to an arbitrary base.
-    fn log(&self, base: &Self) -> Self;
+    fn log(self, base: Self) -> Self;
     /// Returns the base 2 logarithm of the number.
-    fn log2(&self) -> Self;
+    fn log2(self) -> Self;
     /// Returns the base 10 logarithm of the number.
-    fn log10(&self) -> Self;
+    fn log10(self) -> Self;
+    /// Returns the natural logarithm of the number plus 1 (`ln(1+n)`) more
+    /// accurately than if the operations were performed separately.
+    fn ln_1p(self) -> Self;
 
     /// Hyperbolic sine function.
-    fn sinh(&self) -> Self;
+    fn sinh(self) -> Self;
     /// Hyperbolic cosine function.
-    fn cosh(&self) -> Self;
+    fn cosh(self) -> Self;
     /// Hyperbolic tangent function.
-    fn tanh(&self) -> Self;
+    fn tanh(self) -> Self;
     /// Inverse hyperbolic sine function.
-    fn asinh(&self) -> Self;
+    fn asinh(self) -> Self;
     /// Inverse hyperbolic cosine function.
-    fn acosh(&self) -> Self;
+    fn acosh(self) -> Self;
     /// Inverse hyperbolic tangent function.
-    fn atanh(&self) -> Self;
+    fn atanh(self) -> Self;
 
     /// Convert radians to degrees.
-    fn to_degrees(&self) -> Self;
+    fn to_degrees(self) -> Self;
     /// Convert degrees to radians.
-    fn to_radians(&self) -> Self;
+    fn to_radians(self) -> Self;
 }
 
 /// A generic trait for converting a value to a number.
diff --git a/src/libstd/num/strconv.rs b/src/libstd/num/strconv.rs
index ffcb129d63572..bb2fd2a4e257e 100644
--- a/src/libstd/num/strconv.rs
+++ b/src/libstd/num/strconv.rs
@@ -15,7 +15,7 @@ use clone::Clone;
 use container::Container;
 use iter::Iterator;
 use num::{NumCast, Zero, One, cast, Int};
-use num::{Round, Float, FPNaN, FPInfinite, ToPrimitive};
+use num::{Float, FPNaN, FPInfinite, ToPrimitive};
 use num;
 use ops::{Add, Sub, Mul, Div, Rem, Neg};
 use option::{None, Option, Some};
@@ -258,7 +258,7 @@ pub fn int_to_str_bytes_common<T: Int>(num: T, radix: uint, sign: SignFormat, f:
  * - Fails if `radix` > 25 and `exp_format` is `ExpBin` due to conflict
  *   between digit and exponent sign `'p'`.
  */
-pub fn float_to_str_bytes_common<T:NumCast+Zero+One+Eq+Ord+Float+Round+
+pub fn float_to_str_bytes_common<T:NumCast+Zero+One+Eq+Ord+Float+
                                   Div<T,T>+Neg<T>+Rem<T,T>+Mul<T,T>>(
         num: T, radix: uint, negative_zero: bool,
         sign: SignFormat, digits: SignificantDigits, exp_format: ExponentFormat, exp_upper: bool
@@ -310,7 +310,7 @@ pub fn float_to_str_bytes_common<T:NumCast+Zero+One+Eq+Ord+Float+Round+
                     ExpNone => unreachable!()
                 };
 
-                (num / exp_base.powf(&exp), cast::<T, i32>(exp).unwrap())
+                (num / exp_base.powf(exp), cast::<T, i32>(exp).unwrap())
             }
         }
     };
@@ -491,7 +491,7 @@ pub fn float_to_str_bytes_common<T:NumCast+Zero+One+Eq+Ord+Float+Round+
  * `to_str_bytes_common()`, for details see there.
  */
 #[inline]
-pub fn float_to_str_common<T:NumCast+Zero+One+Eq+Ord+NumStrConv+Float+Round+
+pub fn float_to_str_common<T:NumCast+Zero+One+Eq+Ord+NumStrConv+Float+
                              Div<T,T>+Neg<T>+Rem<T,T>+Mul<T,T>>(
         num: T, radix: uint, negative_zero: bool,
         sign: SignFormat, digits: SignificantDigits, exp_format: ExponentFormat, exp_capital: bool
diff --git a/src/libstd/prelude.rs b/src/libstd/prelude.rs
index a44b23c42494e..724c4ca72ad0e 100644
--- a/src/libstd/prelude.rs
+++ b/src/libstd/prelude.rs
@@ -45,7 +45,7 @@ pub use iter::{FromIterator, Extendable};
 pub use iter::{Iterator, DoubleEndedIterator, RandomAccessIterator, CloneableIterator};
 pub use iter::{OrdIterator, MutableDoubleEndedIterator, ExactSize};
 pub use num::{Num, NumCast, CheckedAdd, CheckedSub, CheckedMul};
-pub use num::{Signed, Unsigned, Round};
+pub use num::{Signed, Unsigned};
 pub use num::{Primitive, Int, Float, ToPrimitive, FromPrimitive};
 pub use path::{GenericPath, Path, PosixPath, WindowsPath};
 pub use ptr::RawPtr;
diff --git a/src/libtest/stats.rs b/src/libtest/stats.rs
index 1341b8d230f0b..d55fcc660266b 100644
--- a/src/libtest/stats.rs
+++ b/src/libtest/stats.rs
@@ -352,8 +352,8 @@ pub fn write_boxplot(w: &mut io::Writer, s: &Summary,
     let (q1,q2,q3) = s.quartiles;
 
     // the .abs() handles the case where numbers are negative
-    let lomag = (10.0_f64).powf(&(s.min.abs().log10().floor()));
-    let himag = (10.0_f64).powf(&(s.max.abs().log10().floor()));
+    let lomag = 10.0_f64.powf(s.min.abs().log10().floor());
+    let himag = 10.0_f64.powf(s.max.abs().log10().floor());
 
     // need to consider when the limit is zero
     let lo = if lomag == 0.0 {