@@ -152,7 +152,7 @@ where
152
152
/// valid representation for `ArrayBase`.
153
153
impl < E , D > LeastSquaresSvd < D , E , Ix1 > for ArrayBase < D , Ix2 >
154
154
where
155
- E : Scalar + Lapack + LeastSquaresSvdDivideConquer_ ,
155
+ E : Scalar + Lapack ,
156
156
D : Data < Elem = E > ,
157
157
{
158
158
/// Solve a least squares problem of the form `Ax = rhs`
@@ -175,7 +175,7 @@ where
175
175
/// valid representation for `ArrayBase`.
176
176
impl < E , D > LeastSquaresSvd < D , E , Ix2 > for ArrayBase < D , Ix2 >
177
177
where
178
- E : Scalar + Lapack + LeastSquaresSvdDivideConquer_ ,
178
+ E : Scalar + Lapack ,
179
179
D : Data < Elem = E > ,
180
180
{
181
181
/// Solve a least squares problem of the form `Ax = rhs`
@@ -200,7 +200,7 @@ where
200
200
/// valid representation for `ArrayBase`.
201
201
impl < E , D > LeastSquaresSvdInto < D , E , Ix1 > for ArrayBase < D , Ix2 >
202
202
where
203
- E : Scalar + Lapack + LeastSquaresSvdDivideConquer_ ,
203
+ E : Scalar + Lapack ,
204
204
D : DataMut < Elem = E > ,
205
205
{
206
206
/// Solve a least squares problem of the form `Ax = rhs`
@@ -226,7 +226,7 @@ where
226
226
/// valid representation for `ArrayBase`.
227
227
impl < E , D > LeastSquaresSvdInto < D , E , Ix2 > for ArrayBase < D , Ix2 >
228
228
where
229
- E : Scalar + Lapack + LeastSquaresSvdDivideConquer_ ,
229
+ E : Scalar + Lapack ,
230
230
D : DataMut < Elem = E > ,
231
231
{
232
232
/// Solve a least squares problem of the form `Ax = rhs`
@@ -252,7 +252,7 @@ where
252
252
/// valid representation for `ArrayBase`.
253
253
impl < E , D > LeastSquaresSvdInPlace < D , E , Ix1 > for ArrayBase < D , Ix2 >
254
254
where
255
- E : Scalar + Lapack + LeastSquaresSvdDivideConquer_ ,
255
+ E : Scalar + Lapack ,
256
256
D : DataMut < Elem = E > ,
257
257
{
258
258
/// Solve a least squares problem of the form `Ax = rhs`
@@ -284,15 +284,15 @@ fn compute_least_squares_srhs<E, D1, D2>(
284
284
rhs : & mut ArrayBase < D2 , Ix1 > ,
285
285
) -> Result < LeastSquaresResult < E , Ix1 > >
286
286
where
287
- E : Scalar + Lapack + LeastSquaresSvdDivideConquer_ ,
287
+ E : Scalar + Lapack ,
288
288
D1 : DataMut < Elem = E > ,
289
289
D2 : DataMut < Elem = E > ,
290
290
{
291
291
let LeastSquaresOutput :: < E > {
292
292
singular_values,
293
293
rank,
294
294
} = unsafe {
295
- < E as LeastSquaresSvdDivideConquer_ > :: least_squares (
295
+ E :: least_squares (
296
296
a. layout ( ) ?,
297
297
a. as_allocated_mut ( ) ?,
298
298
rhs. as_slice_memory_order_mut ( )
@@ -333,7 +333,7 @@ fn compute_residual_scalar<E: Scalar, D: Data<Elem = E>>(
333
333
/// valid representation for `ArrayBase`.
334
334
impl < E , D > LeastSquaresSvdInPlace < D , E , Ix2 > for ArrayBase < D , Ix2 >
335
335
where
336
- E : Scalar + Lapack + LeastSquaresSvdDivideConquer_ ,
336
+ E : Scalar + Lapack ,
337
337
D : DataMut < Elem = E > ,
338
338
{
339
339
/// Solve a least squares problem of the form `Ax = rhs`
@@ -366,7 +366,7 @@ fn compute_least_squares_nrhs<E, D1, D2>(
366
366
rhs : & mut ArrayBase < D2 , Ix2 > ,
367
367
) -> Result < LeastSquaresResult < E , Ix2 > >
368
368
where
369
- E : Scalar + Lapack + LeastSquaresSvdDivideConquer_ ,
369
+ E : Scalar + Lapack ,
370
370
D1 : DataMut < Elem = E > ,
371
371
D2 : DataMut < Elem = E > ,
372
372
{
@@ -376,7 +376,7 @@ where
376
376
singular_values,
377
377
rank,
378
378
} = unsafe {
379
- < E as LeastSquaresSvdDivideConquer_ > :: least_squares_nrhs (
379
+ E :: least_squares_nrhs (
380
380
a_layout,
381
381
a. as_allocated_mut ( ) ?,
382
382
rhs_layout,
0 commit comments