Skip to content

Commit e5fd4e1

Browse files
author
Matthias Koeppe
committed
Fix typo of # optional - sage.modules
1 parent 62d3d48 commit e5fd4e1

File tree

2 files changed

+22
-22
lines changed

2 files changed

+22
-22
lines changed

src/sage/categories/magmas.py

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -902,10 +902,10 @@ def multiplication_table(self, names='letters', elements=None):
902902
903903
sage: from sage.categories.examples.finite_semigroups import LeftRegularBand
904904
sage: L = LeftRegularBand(('a', 'b'))
905-
sage: T = L.multiplication_table(names='digits') # optional - sage.matrix
906-
sage: T.column_keys() # optional - sage.matrix
905+
sage: T = L.multiplication_table(names='digits') # optional - sage.modules
906+
sage: T.column_keys() # optional - sage.modules
907907
('a', 'ab', 'b', 'ba')
908-
sage: T # optional - sage.matrix
908+
sage: T # optional - sage.modules
909909
* 0 1 2 3
910910
+--------
911911
0| 0 1 1 1
@@ -918,7 +918,7 @@ def multiplication_table(self, names='letters', elements=None):
918918
919919
sage: L = LeftRegularBand(('a', 'b', 'c'))
920920
sage: elts = sorted(L.list())
921-
sage: L.multiplication_table(elements=elts) # optional - sage.matrix
921+
sage: L.multiplication_table(elements=elts) # optional - sage.modules
922922
* a b c d e f g h i j k l m n o
923923
+------------------------------
924924
a| a b c d e b b c c c d d e e e
@@ -947,7 +947,7 @@ def multiplication_table(self, names='letters', elements=None):
947947
948948
sage: L = LeftRegularBand(('a','b','c'))
949949
sage: elts=['a', 'c', 'ac', 'ca']
950-
sage: L.multiplication_table(names='elements', elements=elts) # optional - sage.matrix
950+
sage: L.multiplication_table(names='elements', elements=elts) # optional - sage.modules
951951
* 'a' 'c' 'ac' 'ca'
952952
+--------------------
953953
'a'| 'a' 'ac' 'ac' 'ac'
@@ -961,15 +961,15 @@ def multiplication_table(self, names='letters', elements=None):
961961
comprehensive documentation. ::
962962
963963
sage: G = AlternatingGroup(3) # optional - sage.groups
964-
sage: T = G.multiplication_table() # optional - sage.groups sage.matrix
965-
sage: T.column_keys() # optional - sage.groups sage.matrix
964+
sage: T = G.multiplication_table() # optional - sage.groups sage.modules
965+
sage: T.column_keys() # optional - sage.groups sage.modules
966966
((), (1,2,3), (1,3,2))
967-
sage: T.translation() # optional - sage.groups sage.matrix
967+
sage: T.translation() # optional - sage.groups sage.modules
968968
{'a': (), 'b': (1,2,3), 'c': (1,3,2)}
969-
sage: T.change_names(['x', 'y', 'z']) # optional - sage.groups sage.matrix
970-
sage: T.translation() # optional - sage.groups sage.matrix
969+
sage: T.change_names(['x', 'y', 'z']) # optional - sage.groups sage.modules
970+
sage: T.translation() # optional - sage.groups sage.modules
971971
{'x': (), 'y': (1,2,3), 'z': (1,3,2)}
972-
sage: T # optional - sage.groups sage.matrix
972+
sage: T # optional - sage.groups sage.modules
973973
* x y z
974974
+------
975975
x| x y z

src/sage/combinat/designs/designs_pyx.pyx

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -183,16 +183,16 @@ def is_group_divisible_design(groups,blocks,v,G=None,K=None,lambd=1,verbose=Fals
183183
EXAMPLES::
184184
185185
sage: from sage.combinat.designs.designs_pyx import is_group_divisible_design
186-
sage: TD = designs.transversal_design(4,10) # optional - sage.matrix
187-
sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)] # optional - sage.matrix
188-
sage: is_group_divisible_design(groups,TD,40,lambd=1) # optional - sage.matrix
186+
sage: TD = designs.transversal_design(4,10) # optional - sage.modules
187+
sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)] # optional - sage.modules
188+
sage: is_group_divisible_design(groups,TD,40,lambd=1) # optional - sage.modules
189189
True
190190
191191
TESTS::
192192
193-
sage: TD = designs.transversal_design(4,10) # optional - sage.matrix
194-
sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)] # optional - sage.matrix
195-
sage: is_group_divisible_design(groups, TD, 40, lambd=2, verbose=True) # optional - sage.matrix
193+
sage: TD = designs.transversal_design(4,10) # optional - sage.modules
194+
sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)] # optional - sage.modules
195+
sage: is_group_divisible_design(groups, TD, 40, lambd=2, verbose=True) # optional - sage.modules
196196
the pair (0,10) has been seen 1 times but lambda=2
197197
False
198198
sage: is_group_divisible_design([[1,2],[3,4]],[[1,2]],40,lambd=1,verbose=True)
@@ -362,18 +362,18 @@ def is_pairwise_balanced_design(blocks,v,K=None,lambd=1,verbose=False):
362362
sage: sts = designs.steiner_triple_system(9)
363363
sage: is_pairwise_balanced_design(sts,9,[3],1)
364364
True
365-
sage: TD = designs.transversal_design(4,10).blocks() # optional - sage.matrix
366-
sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)] # optional - sage.matrix
367-
sage: is_pairwise_balanced_design(TD + groups, 40, [4,10], 1, verbose=True) # optional - sage.matrix
365+
sage: TD = designs.transversal_design(4,10).blocks() # optional - sage.modules
366+
sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)] # optional - sage.modules
367+
sage: is_pairwise_balanced_design(TD + groups, 40, [4,10], 1, verbose=True) # optional - sage.modules
368368
True
369369
370370
TESTS::
371371
372372
sage: from sage.combinat.designs.designs_pyx import is_pairwise_balanced_design
373-
sage: is_pairwise_balanced_design(TD + groups, 40, [4,10], 2, verbose=True) # optional - sage.matrix
373+
sage: is_pairwise_balanced_design(TD + groups, 40, [4,10], 2, verbose=True) # optional - sage.modules
374374
the pair (0,1) has been seen 1 times but lambda=2
375375
False
376-
sage: is_pairwise_balanced_design(TD + groups, 40, [10], 1, verbose=True) # optional - sage.matrix
376+
sage: is_pairwise_balanced_design(TD + groups, 40, [10], 1, verbose=True) # optional - sage.modules
377377
a block has size 4 while K=[10]
378378
False
379379
sage: is_pairwise_balanced_design([[2,2]],40,[2],1,verbose=True)

0 commit comments

Comments
 (0)