Parameters: |
-- x (array, or list of array) – Array of data to be histogrammed.
-- bins (int or List or str, optional) –
If int, bins number of equal-width bins are
-generated. The width is determined by either equal divison of the given range, or
-equal division between the first and last data point if no range is specified.
-If List, bin edges are taken directly from List (can be unequal width).
-If str, then it must be one of:
-'blocks' : use bayesian blocks for dynamic bin widths.
-
-'auto' : use 'auto' feature from numpy.histogram.
-
-'fd', 'doane', 'scott', 'rice', 'sturges', 'sqrt' : see numpy.histogram for
- details.
- (https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html)
-
-
-Defaults to ‘auto’.
-
-- range (tuple or None, optional) –
If specificed, data will only be considered and shown
-for the range given. Otherwise, range will be between the highest and lowest
-datapoint.
-Defaults to None.
-
-- weights (array or None, optional) –
Weights associated with each data point. If
-specified, bin content will be equal to the sum of all relevant weights.
-Defaults to None.
-
-- errorbars (boolean or array, optional) –
If True, errorbars will be calculated and
-displayed based on the err_* arguments. The errorbars will be appropriately
-modified if scale and/or normed is True. If an array is specificed, those values
-will be used (and will not be modifed by any other methods).
-Defaults to False.
-
-- normed (boolean, optional) –
If True, histogram will be normalized such that the integral
-over all bins with be equal to 1. In general, this will NOT mean that the sum of
-all bin contents will be 1, unless all bin widths are equal to 1. If used with
-scale option, normalization happens before scale.
-Defaults to False
-
-- scale (Number or 'binwidth', optional) –
If Number, all bin contents are multiplied by
-the given value. If ‘binwidth’, every bin content is divided by the bin width. If
-used with normed option, scaling occurs after normalization (‘binwidth’ will be
-ignored in this case, because it is handled automatically when normalizing).
-Defaults to None
-
-- stacked (boolean, optional) –
If True, multiple input data sets will be layered on top of
-each other, such that the height of each bin is the sum of all the relevant dataset
-contributions. If used with errorbars, the bars will be associated with the bin
-totals, not the individual components.
-Defaults to False.
-
-- histtype (stepfilled', 'step', 'bar', or 'marker') –
Draw options for histograms.
-‘stepfilled’, ‘step’, and ‘bar’ inherit from matplotlib. ‘marker’ places a single
-point at the center of each bin (best used with error bars). ‘marker’ will throw an
-exception if used with ‘stacked’ option.
-Defaults to ‘stepfilled’.
-
-- **kwargs –
-
-- ax (matplotlib axes instance):
-- Specify the Axes on which to draw the histogram. If not specified, then the
-current active axes will be used, or a new axes instance will be generated.
Defaults to current axis.
-
-
-
-
-- err_style (‘band’ or ‘line’):
-- Draw style for errorbars.
Defaults depend on histtype,
-where histtype=’stepfilled’ corresponds to ‘band’, and all others correspond to
-‘line’.
-
-
-
-
-- err_color (‘auto’ or valid matplotlib colors):
-- Color for error bars. If ‘auto’ is
-chosen and stacked is False, The color will be a slightly darker version of
-the associated histogram color. If stacked is True, color will be the next in
-the current color cycle.
Defaults to ‘auto’.
-
-
-
-
-- err_type (‘sumW2’ or ‘gaussian’):
-- Method of calculating error bars, if no error is given. The ‘gaussian’ method
-displays the error of each bin as the square root of the bin content. The
-‘sumW2’ method displays the error as the square of the sum of the squares of the
-weights.
Defaults to ‘gaussian’ if no weights are given, else ‘sumW2’.
-
-
-
-
-- err_return (bool):
-- Return additional objects corresponding to the values of the error associated
-with each bin, and the patches used to display the error bars.
Defaults to ‘False’
-
-
-
-
-
-- Note – Other keyword arguments are described in pylab.hist().
-
- |
-
-Returns: | (bin_content, bin_edges, bin_errors (optional), patches)
-
-- bin_content (array or list of array):
-The values of the histogram bins. See normed or
-density and weights for a description of the possible semantics. If input x is an
-array, then this is an array of length nbins. If input is a sequence arrays [data1,
-data2,..], then this is a list of arrays with the values of the histograms for each
-of the arrays in the same order.
-
-- bin_edges (array):
-The edges of the bins. Length nbins + 1 (nbins left edges and right edge of last
-bin). Always a single array even when multiple data sets are passed in.
-
-- bin_errors (array or list of arrays, optional):
-The values of the error bars associated with each bin. It is only returned if
-errorbars is True and err_return is True.
-
-- bin_patches (list or list of lists):
-Silent list of individual patches used to create the histogram or list of such list
-if multiple input datasets.
-
-
-
- |
-
-