@@ -87,7 +87,7 @@ def test_diversity__windowed(sample_size):
87
87
sample_cohorts = np .full_like (ts .samples (), 0 )
88
88
ds ["sample_cohort" ] = xr .DataArray (sample_cohorts , dims = "samples" )
89
89
ds = ds .assign_coords ({"cohorts" : ["co_0" ]})
90
- ds = window (ds , size = 25 , step = 25 )
90
+ ds = window (ds , size = 25 )
91
91
ds = diversity (ds )
92
92
div = ds ["stat_diversity" ].sel (cohorts = "co_0" ).compute ()
93
93
@@ -103,7 +103,7 @@ def test_diversity__windowed(sample_size):
103
103
ds = count_variant_alleles (ts_to_dataset (ts )) # type: ignore[no-untyped-call]
104
104
ac = ds ["variant_allele_count" ].values
105
105
mpd = allel .mean_pairwise_difference (ac , fill = 0 )
106
- ska_div = allel .moving_statistic (mpd , np .sum , size = 25 , step = 25 )
106
+ ska_div = allel .moving_statistic (mpd , np .sum , size = 25 )
107
107
np .testing .assert_allclose (
108
108
div [:- 1 ], ska_div
109
109
) # scikit-allel has final window missing
@@ -159,7 +159,7 @@ def test_divergence__windowed(sample_size, n_cohorts, chunks):
159
159
ds ["sample_cohort" ] = xr .DataArray (sample_cohorts , dims = "samples" )
160
160
cohort_names = [f"co_{ i } " for i in range (n_cohorts )]
161
161
ds = ds .assign_coords ({"cohorts_0" : cohort_names , "cohorts_1" : cohort_names })
162
- ds = window (ds , size = 25 , step = 25 )
162
+ ds = window (ds , size = 25 )
163
163
ds = divergence (ds )
164
164
div = ds ["stat_divergence" ].values
165
165
# test off-diagonal entries, by replacing diagonal with NaNs
@@ -192,7 +192,7 @@ def test_divergence__windowed_scikit_allel_comparison(sample_size, n_cohorts, ch
192
192
ds ["sample_cohort" ] = xr .DataArray (sample_cohorts , dims = "samples" )
193
193
cohort_names = [f"co_{ i } " for i in range (n_cohorts )]
194
194
ds = ds .assign_coords ({"cohorts_0" : cohort_names , "cohorts_1" : cohort_names })
195
- ds = window (ds , size = 25 , step = 25 )
195
+ ds = window (ds , size = 25 )
196
196
ds = divergence (ds )
197
197
div = ds ["stat_divergence" ].values
198
198
# test off-diagonal entries, by replacing diagonal with NaNs
@@ -205,7 +205,7 @@ def test_divergence__windowed_scikit_allel_comparison(sample_size, n_cohorts, ch
205
205
ac1 = ds1 ["variant_allele_count" ].values
206
206
ac2 = ds2 ["variant_allele_count" ].values
207
207
mpd = allel .mean_pairwise_difference_between (ac1 , ac2 , fill = 0 )
208
- ska_div = allel .moving_statistic (mpd , np .sum , size = 25 , step = 25 ) # noqa: F841
208
+ ska_div = allel .moving_statistic (mpd , np .sum , size = 25 ) # noqa: F841
209
209
# TODO: investigate why numbers are different
210
210
np .testing .assert_allclose (
211
211
div [:- 1 ], ska_div
@@ -226,7 +226,7 @@ def test_Fst__Hudson(sample_size):
226
226
cohort_names = [f"co_{ i } " for i in range (n_cohorts )]
227
227
ds = ds .assign_coords ({"cohorts_0" : cohort_names , "cohorts_1" : cohort_names })
228
228
n_variants = ds .dims ["variants" ]
229
- ds = window (ds , size = n_variants , step = n_variants ) # single window
229
+ ds = window (ds , size = n_variants ) # single window
230
230
ds = Fst (ds , estimator = "Hudson" )
231
231
fst = ds .stat_Fst .sel (cohorts_0 = "co_0" , cohorts_1 = "co_1" ).values
232
232
@@ -254,7 +254,7 @@ def test_Fst__Nei(sample_size, n_cohorts):
254
254
cohort_names = [f"co_{ i } " for i in range (n_cohorts )]
255
255
ds = ds .assign_coords ({"cohorts_0" : cohort_names , "cohorts_1" : cohort_names })
256
256
n_variants = ds .dims ["variants" ]
257
- ds = window (ds , size = n_variants , step = n_variants ) # single window
257
+ ds = window (ds , size = n_variants ) # single window
258
258
ds = Fst (ds , estimator = "Nei" )
259
259
fst = ds .stat_Fst .values
260
260
@@ -289,7 +289,7 @@ def test_Fst__windowed(sample_size, n_cohorts, chunks):
289
289
ds ["sample_cohort" ] = xr .DataArray (sample_cohorts , dims = "samples" )
290
290
cohort_names = [f"co_{ i } " for i in range (n_cohorts )]
291
291
ds = ds .assign_coords ({"cohorts_0" : cohort_names , "cohorts_1" : cohort_names })
292
- ds = window (ds , size = 25 , step = 25 )
292
+ ds = window (ds , size = 25 )
293
293
fst_ds = Fst (ds , estimator = "Nei" )
294
294
fst = fst_ds ["stat_Fst" ].values
295
295
@@ -312,7 +312,7 @@ def test_Fst__windowed(sample_size, n_cohorts, chunks):
312
312
313
313
ac1 = fst_ds .cohort_allele_count .values [:, 0 , :]
314
314
ac2 = fst_ds .cohort_allele_count .values [:, 1 , :]
315
- ska_fst = allel .moving_hudson_fst (ac1 , ac2 , size = 25 , step = 25 )
315
+ ska_fst = allel .moving_hudson_fst (ac1 , ac2 , size = 25 )
316
316
317
317
np .testing .assert_allclose (
318
318
fst [:- 1 ], ska_fst
@@ -326,7 +326,7 @@ def test_Tajimas_D(sample_size):
326
326
sample_cohorts = np .full_like (ts .samples (), 0 )
327
327
ds ["sample_cohort" ] = xr .DataArray (sample_cohorts , dims = "samples" )
328
328
n_variants = ds .dims ["variants" ]
329
- ds = window (ds , size = n_variants , step = n_variants ) # single window
329
+ ds = window (ds , size = n_variants ) # single window
330
330
ds = Tajimas_D (ds )
331
331
d = ds .stat_Tajimas_D .compute ()
332
332
ts_d = ts .Tajimas_D ()
@@ -348,7 +348,7 @@ def test_pbs(sample_size, n_cohorts):
348
348
cohort_names = [f"co_{ i } " for i in range (n_cohorts )]
349
349
ds = ds .assign_coords ({"cohorts_0" : cohort_names , "cohorts_1" : cohort_names })
350
350
n_variants = ds .dims ["variants" ]
351
- ds = window (ds , size = n_variants , step = n_variants ) # single window
351
+ ds = window (ds , size = n_variants ) # single window
352
352
353
353
ds = pbs (ds )
354
354
stat_pbs = ds ["stat_pbs" ]
@@ -360,9 +360,7 @@ def test_pbs(sample_size, n_cohorts):
360
360
361
361
ska_pbs_value = np .full ([1 , n_cohorts , n_cohorts , n_cohorts ], np .nan )
362
362
for i , j , k in itertools .combinations (range (n_cohorts ), 3 ):
363
- ska_pbs_value [0 , i , j , k ] = allel .pbs (
364
- ac1 , ac2 , ac3 , window_size = n_variants , window_step = n_variants
365
- )
363
+ ska_pbs_value [0 , i , j , k ] = allel .pbs (ac1 , ac2 , ac3 , window_size = n_variants )
366
364
367
365
np .testing .assert_allclose (stat_pbs , ska_pbs_value )
368
366
@@ -382,7 +380,7 @@ def test_pbs__windowed(sample_size, n_cohorts, chunks):
382
380
ds ["sample_cohort" ] = xr .DataArray (sample_cohorts , dims = "samples" )
383
381
cohort_names = [f"co_{ i } " for i in range (n_cohorts )]
384
382
ds = ds .assign_coords ({"cohorts_0" : cohort_names , "cohorts_1" : cohort_names })
385
- ds = window (ds , size = 25 , step = 25 )
383
+ ds = window (ds , size = 25 )
386
384
387
385
ds = pbs (ds )
388
386
stat_pbs = ds ["stat_pbs" ].values
@@ -396,9 +394,7 @@ def test_pbs__windowed(sample_size, n_cohorts, chunks):
396
394
n_windows = ds .dims ["windows" ] - 1
397
395
ska_pbs_value = np .full ([n_windows , n_cohorts , n_cohorts , n_cohorts ], np .nan )
398
396
for i , j , k in itertools .combinations (range (n_cohorts ), 3 ):
399
- ska_pbs_value [:, i , j , k ] = allel .pbs (
400
- ac1 , ac2 , ac3 , window_size = 25 , window_step = 25
401
- )
397
+ ska_pbs_value [:, i , j , k ] = allel .pbs (ac1 , ac2 , ac3 , window_size = 25 )
402
398
403
399
np .testing .assert_allclose (stat_pbs [:- 1 ], ska_pbs_value )
404
400
@@ -418,7 +414,7 @@ def test_Garud_h(n_variants, n_samples, n_contigs, n_cohorts, chunks):
418
414
[np .full_like (subset , i ) for i , subset in enumerate (subsets )]
419
415
)
420
416
ds ["sample_cohort" ] = xr .DataArray (sample_cohorts , dims = "samples" )
421
- ds = window (ds , size = 3 , step = 3 )
417
+ ds = window (ds , size = 3 )
422
418
423
419
gh = Garud_h (ds )
424
420
h1 = gh .stat_Garud_h1 .values
@@ -431,7 +427,7 @@ def test_Garud_h(n_variants, n_samples, n_contigs, n_cohorts, chunks):
431
427
gt = ds .call_genotype .values [:, sample_cohorts == c , :]
432
428
ska_gt = allel .GenotypeArray (gt )
433
429
ska_ha = ska_gt .to_haplotypes ()
434
- ska_h = allel .moving_garud_h (ska_ha , size = 3 , step = 3 )
430
+ ska_h = allel .moving_garud_h (ska_ha , size = 3 )
435
431
436
432
np .testing .assert_allclose (h1 [:, c ], ska_h [0 ])
437
433
np .testing .assert_allclose (h12 [:, c ], ska_h [1 ])
0 commit comments