|
22 | 22 | from sklearn.metrics import r2_score as sklearn_r2_score
|
23 | 23 | from tensorflow_addons.metrics import RSquare
|
24 | 24 | from tensorflow_addons.metrics.r_square import VALID_MULTIOUTPUT
|
25 |
| -from tensorflow_addons.utils import test_utils |
26 |
| - |
27 |
| - |
28 |
| -@test_utils.run_all_in_graph_and_eager_modes |
29 |
| -class RSquareTest(tf.test.TestCase): |
30 |
| - def test_config(self): |
31 |
| - r2_obj = RSquare(name="r_square") |
32 |
| - self.assertEqual(r2_obj.name, "r_square") |
33 |
| - self.assertEqual(r2_obj.dtype, tf.float32) |
34 |
| - # Check save and restore config |
35 |
| - r2_obj2 = RSquare.from_config(r2_obj.get_config()) |
36 |
| - self.assertEqual(r2_obj2.name, "r_square") |
37 |
| - self.assertEqual(r2_obj2.dtype, tf.float32) |
38 |
| - |
39 |
| - def initialize_vars(self, y_shape=(), multioutput: str = "uniform_average"): |
40 |
| - r2_obj = RSquare(y_shape=y_shape, multioutput=multioutput) |
41 |
| - self.evaluate(tf.compat.v1.variables_initializer(r2_obj.variables)) |
42 |
| - return r2_obj |
43 |
| - |
44 |
| - def update_obj_states(self, obj, actuals, preds, sample_weight=None): |
45 |
| - update_op = obj.update_state(actuals, preds, sample_weight=sample_weight) |
46 |
| - self.evaluate(update_op) |
47 |
| - |
48 |
| - def check_results(self, obj, value): |
49 |
| - self.assertAllClose(value, self.evaluate(obj.result()), atol=1e-5) |
50 |
| - |
51 |
| - def test_r2_perfect_score(self): |
52 |
| - actuals = tf.constant([100, 700, 40, 5.7], dtype=tf.float32) |
53 |
| - preds = tf.constant([100, 700, 40, 5.7], dtype=tf.float32) |
54 |
| - actuals = tf.cast(actuals, dtype=tf.float32) |
55 |
| - preds = tf.cast(preds, dtype=tf.float32) |
56 |
| - # Initialize |
57 |
| - r2_obj = self.initialize_vars() |
58 |
| - # Update |
59 |
| - self.update_obj_states(r2_obj, actuals, preds) |
60 |
| - # Check results |
61 |
| - self.check_results(r2_obj, 1.0) |
62 |
| - |
63 |
| - def test_r2_worst_score(self): |
64 |
| - actuals = tf.constant([10, 600, 4, 9.77], dtype=tf.float32) |
65 |
| - preds = tf.constant([1, 70, 40, 5.7], dtype=tf.float32) |
66 |
| - actuals = tf.cast(actuals, dtype=tf.float32) |
67 |
| - preds = tf.cast(preds, dtype=tf.float32) |
68 |
| - # Initialize |
69 |
| - r2_obj = self.initialize_vars() |
70 |
| - # Update |
71 |
| - self.update_obj_states(r2_obj, actuals, preds) |
72 |
| - # Check results |
73 |
| - self.check_results(r2_obj, -0.073607) |
74 |
| - |
75 |
| - def test_r2_random_score(self): |
76 |
| - actuals = tf.constant([10, 600, 3, 9.77], dtype=tf.float32) |
77 |
| - preds = tf.constant([1, 340, 40, 5.7], dtype=tf.float32) |
78 |
| - actuals = tf.cast(actuals, dtype=tf.float32) |
79 |
| - preds = tf.cast(preds, dtype=tf.float32) |
80 |
| - # Initialize |
81 |
| - r2_obj = self.initialize_vars() |
82 |
| - # Update |
83 |
| - self.update_obj_states(r2_obj, actuals, preds) |
84 |
| - # Check results |
85 |
| - self.check_results(r2_obj, 0.7376327) |
86 |
| - |
87 |
| - def test_r2_sklearn_comparison(self): |
88 |
| - """Test that RSquare behaves similarly to the scikit-learn |
89 |
| - implementation of the same metric, given random input. |
90 |
| - """ |
91 |
| - for multioutput in VALID_MULTIOUTPUT: |
92 |
| - for i in range(10): |
93 |
| - actuals = np.random.rand(64, 3) |
94 |
| - preds = np.random.rand(64, 3) |
95 |
| - sample_weight = np.random.rand(64, 1) |
96 |
| - tensor_actuals = tf.constant(actuals, dtype=tf.float32) |
97 |
| - tensor_preds = tf.constant(preds, dtype=tf.float32) |
98 |
| - tensor_sample_weight = tf.constant(sample_weight, dtype=tf.float32) |
99 |
| - tensor_actuals = tf.cast(tensor_actuals, dtype=tf.float32) |
100 |
| - tensor_preds = tf.cast(tensor_preds, dtype=tf.float32) |
101 |
| - tensor_sample_weight = tf.cast(tensor_sample_weight, dtype=tf.float32) |
102 |
| - # Initialize |
103 |
| - r2_obj = self.initialize_vars(y_shape=(3,), multioutput=multioutput) |
104 |
| - # Update |
105 |
| - self.update_obj_states( |
106 |
| - r2_obj, |
107 |
| - tensor_actuals, |
108 |
| - tensor_preds, |
109 |
| - sample_weight=tensor_sample_weight, |
110 |
| - ) |
111 |
| - # Check results by comparing to results of scikit-learn r2 implementation |
112 |
| - sklearn_result = sklearn_r2_score( |
113 |
| - actuals, preds, sample_weight=sample_weight, multioutput=multioutput |
114 |
| - ) |
115 |
| - self.check_results(r2_obj, sklearn_result) |
116 |
| - |
117 |
| - def test_unrecognized_multioutput(self): |
118 |
| - with pytest.raises(ValueError): |
119 |
| - self.initialize_vars(multioutput="meadian") |
| 25 | + |
| 26 | + |
| 27 | +def test_config(): |
| 28 | + r2_obj = RSquare(name="r_square") |
| 29 | + assert r2_obj.name == "r_square" |
| 30 | + assert r2_obj.dtype == tf.float32 |
| 31 | + # Check save and restore config |
| 32 | + r2_obj2 = RSquare.from_config(r2_obj.get_config()) |
| 33 | + assert r2_obj2.name == "r_square" |
| 34 | + assert r2_obj2.dtype == tf.float32 |
| 35 | + |
| 36 | + |
| 37 | +def initialize_vars(y_shape=(), multioutput: str = "uniform_average"): |
| 38 | + return RSquare(y_shape=y_shape, multioutput=multioutput) |
| 39 | + |
| 40 | + |
| 41 | +def update_obj_states(obj, actuals, preds, sample_weight=None): |
| 42 | + obj.update_state(actuals, preds, sample_weight=sample_weight) |
| 43 | + |
| 44 | + |
| 45 | +def check_results(obj, value): |
| 46 | + np.testing.assert_allclose(value, obj.result(), atol=1e-5) |
| 47 | + |
| 48 | + |
| 49 | +def test_r2_perfect_score(): |
| 50 | + actuals = tf.constant([100, 700, 40, 5.7], dtype=tf.float32) |
| 51 | + preds = tf.constant([100, 700, 40, 5.7], dtype=tf.float32) |
| 52 | + actuals = tf.cast(actuals, dtype=tf.float32) |
| 53 | + preds = tf.cast(preds, dtype=tf.float32) |
| 54 | + # Initialize |
| 55 | + r2_obj = initialize_vars() |
| 56 | + # Update |
| 57 | + update_obj_states(r2_obj, actuals, preds) |
| 58 | + # Check results |
| 59 | + check_results(r2_obj, 1.0) |
| 60 | + |
| 61 | + |
| 62 | +def test_r2_worst_score(): |
| 63 | + actuals = tf.constant([10, 600, 4, 9.77], dtype=tf.float32) |
| 64 | + preds = tf.constant([1, 70, 40, 5.7], dtype=tf.float32) |
| 65 | + actuals = tf.cast(actuals, dtype=tf.float32) |
| 66 | + preds = tf.cast(preds, dtype=tf.float32) |
| 67 | + # Initialize |
| 68 | + r2_obj = initialize_vars() |
| 69 | + # Update |
| 70 | + update_obj_states(r2_obj, actuals, preds) |
| 71 | + # Check results |
| 72 | + check_results(r2_obj, -0.073607) |
| 73 | + |
| 74 | + |
| 75 | +def test_r2_random_score(): |
| 76 | + actuals = tf.constant([10, 600, 3, 9.77], dtype=tf.float32) |
| 77 | + preds = tf.constant([1, 340, 40, 5.7], dtype=tf.float32) |
| 78 | + actuals = tf.cast(actuals, dtype=tf.float32) |
| 79 | + preds = tf.cast(preds, dtype=tf.float32) |
| 80 | + # Initialize |
| 81 | + r2_obj = initialize_vars() |
| 82 | + # Update |
| 83 | + update_obj_states(r2_obj, actuals, preds) |
| 84 | + # Check results |
| 85 | + check_results(r2_obj, 0.7376327) |
| 86 | + |
| 87 | + |
| 88 | +def test_r2_sklearn_comparison(): |
| 89 | + """Test that RSquare behaves similarly to the scikit-learn |
| 90 | + implementation of the same metric, given random input. |
| 91 | + """ |
| 92 | + for multioutput in VALID_MULTIOUTPUT: |
| 93 | + for i in range(10): |
| 94 | + actuals = np.random.rand(64, 3) |
| 95 | + preds = np.random.rand(64, 3) |
| 96 | + sample_weight = np.random.rand(64, 1) |
| 97 | + tensor_actuals = tf.constant(actuals, dtype=tf.float32) |
| 98 | + tensor_preds = tf.constant(preds, dtype=tf.float32) |
| 99 | + tensor_sample_weight = tf.constant(sample_weight, dtype=tf.float32) |
| 100 | + tensor_actuals = tf.cast(tensor_actuals, dtype=tf.float32) |
| 101 | + tensor_preds = tf.cast(tensor_preds, dtype=tf.float32) |
| 102 | + tensor_sample_weight = tf.cast(tensor_sample_weight, dtype=tf.float32) |
| 103 | + # Initialize |
| 104 | + r2_obj = initialize_vars(y_shape=(3,), multioutput=multioutput) |
| 105 | + # Update |
| 106 | + update_obj_states( |
| 107 | + r2_obj, |
| 108 | + tensor_actuals, |
| 109 | + tensor_preds, |
| 110 | + sample_weight=tensor_sample_weight, |
| 111 | + ) |
| 112 | + # Check results by comparing to results of scikit-learn r2 implementation |
| 113 | + sklearn_result = sklearn_r2_score( |
| 114 | + actuals, preds, sample_weight=sample_weight, multioutput=multioutput |
| 115 | + ) |
| 116 | + check_results(r2_obj, sklearn_result) |
| 117 | + |
| 118 | + |
| 119 | +def test_unrecognized_multioutput(): |
| 120 | + with pytest.raises(ValueError): |
| 121 | + initialize_vars(multioutput="meadian") |
120 | 122 |
|
121 | 123 |
|
122 | 124 | if __name__ == "__main__":
|
|
0 commit comments