diff --git a/tensorflow_addons/layers/tlu_test.py b/tensorflow_addons/layers/tlu_test.py index 8560d6c135..5cb5533541 100644 --- a/tensorflow_addons/layers/tlu_test.py +++ b/tensorflow_addons/layers/tlu_test.py @@ -19,43 +19,47 @@ import pytest import numpy as np import tensorflow as tf -from absl.testing import parameterized + from tensorflow_addons.layers.tlu import TLU from tensorflow_addons.utils import test_utils -@parameterized.parameters([np.float16, np.float32, np.float64]) -@test_utils.run_all_in_graph_and_eager_modes -class TestTLU(tf.test.TestCase): - def test_random(self, dtype): - x = np.array([[-2.5, 0.0, 0.3]]).astype(dtype) - val = np.array([[0.0, 0.0, 0.3]]).astype(dtype) - test_utils.layer_test( - TLU, kwargs={"dtype": dtype}, input_data=x, expected_output=val - ) - - def test_affine(self, dtype): - x = np.array([[-2.5, 0.0, 0.3]]).astype(dtype) - val = np.array([[-1.5, 1.0, 1.3]]).astype(dtype) - test_utils.layer_test( - TLU, - kwargs={ - "affine": True, - "dtype": dtype, - "alpha_initializer": "ones", - "tau_initializer": "ones", - }, - input_data=x, - expected_output=val, - ) - - def test_serialization(self, dtype): - tlu = TLU( - affine=True, alpha_initializer="ones", tau_initializer="ones", dtype=dtype - ) - serialized_tlu = tf.keras.layers.serialize(tlu) - new_layer = tf.keras.layers.deserialize(serialized_tlu) - self.assertEqual(tlu.get_config(), new_layer.get_config()) +@pytest.mark.usefixtures("maybe_run_functions_eagerly") +@pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64]) +def test_random(dtype): + x = np.array([[-2.5, 0.0, 0.3]]).astype(dtype) + val = np.array([[0.0, 0.0, 0.3]]).astype(dtype) + test_utils.layer_test( + TLU, kwargs={"dtype": dtype}, input_data=x, expected_output=val + ) + + +@pytest.mark.usefixtures("maybe_run_functions_eagerly") +@pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64]) +def test_affine(dtype): + x = np.array([[-2.5, 0.0, 0.3]]).astype(dtype) + val = np.array([[-1.5, 1.0, 1.3]]).astype(dtype) + test_utils.layer_test( + TLU, + kwargs={ + "affine": True, + "dtype": dtype, + "alpha_initializer": "ones", + "tau_initializer": "ones", + }, + input_data=x, + expected_output=val, + ) + + +@pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64]) +def test_serialization(dtype): + tlu = TLU( + affine=True, alpha_initializer="ones", tau_initializer="ones", dtype=dtype + ) + serialized_tlu = tf.keras.layers.serialize(tlu) + new_layer = tf.keras.layers.deserialize(serialized_tlu) + assert tlu.get_config() == new_layer.get_config() if __name__ == "__main__":