@@ -155,8 +155,8 @@ public CategoricalCrossentropy(Ops tf, String name, boolean fromLogits) {
155
155
* @param tf the TensorFlow Ops
156
156
* @param fromLogits Whether to interpret predictions as a tensor of logit values
157
157
* @param labelSmoothing Float in <code>[0, 1]</code>. When <code>> 0</code>, label values are smoothed, meaning the
158
- * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2<code> means that we will use a
159
- * value of </ code>0.1<code> for label </ code>0<code> and </ code>0.9<code> for label </ code>1<code>
158
+ * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2</ code> means that we will use a
159
+ * value of <code>0.1</ code> for label <code>0</ code> and <code>0.9</ code> for label <code>1</ code>
160
160
*/
161
161
public CategoricalCrossentropy (Ops tf , boolean fromLogits , float labelSmoothing ) {
162
162
this (tf , null , fromLogits , labelSmoothing , REDUCTION_DEFAULT , DEFAULT_AXIS );
@@ -170,8 +170,8 @@ public CategoricalCrossentropy(Ops tf, boolean fromLogits, float labelSmoothing)
170
170
* @param name the name of this loss
171
171
* @param fromLogits Whether to interpret predictions as a tensor of logit values
172
172
* @param labelSmoothing Float in <code>[0, 1]</code>. When <code>> 0</code>, label values are smoothed, meaning the
173
- * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2<code> means that we will use a
174
- * value of </ code>0.1<code> for label </ code>0<code> and </ code>0.9<code> for label </ code>1<code>
173
+ * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2</ code> means that we will use a
174
+ * value of <code>0.1</ code> for label <code>0</ code> and <code>0.9</ code> for label <code>1</ code>
175
175
*/
176
176
public CategoricalCrossentropy (Ops tf , String name , boolean fromLogits , float labelSmoothing ) {
177
177
this (tf , name , fromLogits , labelSmoothing , REDUCTION_DEFAULT , DEFAULT_AXIS );
@@ -184,8 +184,8 @@ public CategoricalCrossentropy(Ops tf, String name, boolean fromLogits, float la
184
184
* @param tf the TensorFlow Ops
185
185
* @param fromLogits Whether to interpret predictions as a tensor of logit values
186
186
* @param labelSmoothing Float in <code>[0, 1]</code>. When <code>> 0</code>, label values are smoothed, meaning the
187
- * confidence on label values are relaxed. e.g. <code>x=0.2<code> means that we will use a
188
- * value of </ code>0.1<code> for label </ code>0<code> and </ code>0.9<code> for label </ code>1<code>
187
+ * confidence on label values are relaxed. e.g. <code>x=0.2</ code> means that we will use a
188
+ * value of <code>0.1</ code> for label <code>0</ code> and <code>0.9</ code> for label <code>1</ code>
189
189
* @param reduction Type of Reduction to apply to loss.
190
190
*/
191
191
public CategoricalCrossentropy (
@@ -200,8 +200,8 @@ public CategoricalCrossentropy(
200
200
* @param name the name of this loss
201
201
* @param fromLogits Whether to interpret predictions as a tensor of logit values
202
202
* @param labelSmoothing Float in <code>[0, 1]</code>. When <code>> 0</code>, label values are smoothed, meaning the
203
- * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2<code> means that we will use a
204
- * value of </ code>0.1<code> for label </ code>0<code> and </ code>0.9<code> for label </ code>1<code>
203
+ * confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2</ code> means that we will use a
204
+ * value of <code>0.1</ code> for label <code>0</ code> and <code>0.9</ code> for label <code>1</ code>
205
205
* @param reduction Type of Reduction to apply to loss.
206
206
* @param axis The channels axis. <code>axis=-1</code> corresponds to data format `Channels Last'
207
207
* and <code>axis=1</code> corresponds to data format 'Channels First'.
0 commit comments