|
| 1 | +''' |
| 2 | +Demonstrate prompting of text-to-text |
| 3 | +encoder/decoder models, specifically BART |
| 4 | +''' |
| 5 | + |
| 6 | +from vllm import LLM, SamplingParams |
| 7 | +from vllm.inputs import ExplicitEncoderDecoderPrompt, TextPrompt, TokensPrompt |
| 8 | +from vllm.utils import zip_enc_dec_prompt_lists |
| 9 | + |
| 10 | +dtype = "float" |
| 11 | + |
| 12 | +# Create a BART encoder/decoder model instance |
| 13 | +llm = LLM( |
| 14 | + model="facebook/bart-large-cnn", |
| 15 | + dtype=dtype, |
| 16 | +) |
| 17 | + |
| 18 | +# Get BART tokenizer |
| 19 | +tokenizer = llm.llm_engine.get_tokenizer_group() |
| 20 | + |
| 21 | +# Test prompts |
| 22 | +# |
| 23 | +# This section shows all of the valid ways to prompt an |
| 24 | +# encoder/decoder model. |
| 25 | +# |
| 26 | +# - Helpers for building prompts |
| 27 | +text_prompt_raw = "Hello, my name is" |
| 28 | +text_prompt = TextPrompt(prompt="The president of the United States is") |
| 29 | +tokens_prompt = TokensPrompt(prompt_token_ids=tokenizer.encode( |
| 30 | + prompt="The capital of France is")) |
| 31 | +# - Pass a single prompt to encoder/decoder model |
| 32 | +# (implicitly encoder input prompt); |
| 33 | +# decoder input prompt is assumed to be None |
| 34 | + |
| 35 | +single_text_prompt_raw = text_prompt_raw # Pass a string directly |
| 36 | +single_text_prompt = text_prompt # Pass a TextPrompt |
| 37 | +single_tokens_prompt = tokens_prompt # Pass a TokensPrompt |
| 38 | + |
| 39 | +# - Pass explicit encoder and decoder input prompts within one data structure. |
| 40 | +# Encoder and decoder prompts can both independently be text or tokens, with |
| 41 | +# no requirement that they be the same prompt type. Some example prompt-type |
| 42 | +# combinations are shown below, note that these are not exhaustive. |
| 43 | + |
| 44 | +enc_dec_prompt1 = ExplicitEncoderDecoderPrompt( |
| 45 | + # Pass encoder prompt string directly, & |
| 46 | + # pass decoder prompt tokens |
| 47 | + encoder_prompt=single_text_prompt_raw, |
| 48 | + decoder_prompt=single_tokens_prompt, |
| 49 | +) |
| 50 | +enc_dec_prompt2 = ExplicitEncoderDecoderPrompt( |
| 51 | + # Pass TextPrompt to encoder, and |
| 52 | + # pass decoder prompt string directly |
| 53 | + encoder_prompt=single_text_prompt, |
| 54 | + decoder_prompt=single_text_prompt_raw, |
| 55 | +) |
| 56 | +enc_dec_prompt3 = ExplicitEncoderDecoderPrompt( |
| 57 | + # Pass encoder prompt tokens directly, and |
| 58 | + # pass TextPrompt to decoder |
| 59 | + encoder_prompt=single_tokens_prompt, |
| 60 | + decoder_prompt=single_text_prompt, |
| 61 | +) |
| 62 | + |
| 63 | +# - Finally, here's a useful helper function for zipping encoder and |
| 64 | +# decoder prompt lists together into a list of ExplicitEncoderDecoderPrompt |
| 65 | +# instances |
| 66 | +zipped_prompt_list = zip_enc_dec_prompt_lists( |
| 67 | + ['An encoder prompt', 'Another encoder prompt'], |
| 68 | + ['A decoder prompt', 'Another decoder prompt']) |
| 69 | + |
| 70 | +# - Let's put all of the above example prompts together into one list |
| 71 | +# which we will pass to the encoder/decoder LLM. |
| 72 | +prompts = [ |
| 73 | + single_text_prompt_raw, single_text_prompt, single_tokens_prompt, |
| 74 | + enc_dec_prompt1, enc_dec_prompt2, enc_dec_prompt3 |
| 75 | +] + zipped_prompt_list |
| 76 | + |
| 77 | +print(prompts) |
| 78 | + |
| 79 | +# Create a sampling params object. |
| 80 | +sampling_params = SamplingParams( |
| 81 | + temperature=0, |
| 82 | + top_p=1.0, |
| 83 | + min_tokens=0, |
| 84 | + max_tokens=20, |
| 85 | +) |
| 86 | + |
| 87 | +# Generate output tokens from the prompts. The output is a list of |
| 88 | +# RequestOutput objects that contain the prompt, generated |
| 89 | +# text, and other information. |
| 90 | +outputs = llm.generate(prompts, sampling_params) |
| 91 | + |
| 92 | +# Print the outputs. |
| 93 | +for output in outputs: |
| 94 | + prompt = output.prompt |
| 95 | + encoder_prompt = output.encoder_prompt |
| 96 | + generated_text = output.outputs[0].text |
| 97 | + print(f"Encoder prompt: {encoder_prompt!r}, " |
| 98 | + f"Decoder prompt: {prompt!r}, " |
| 99 | + f"Generated text: {generated_text!r}") |
0 commit comments