1
1
[DEFAULT]
2
- version = 2020.3.18_multitask
3
- description = Multitask model trained on a combination of Reach and Rodrigues
4
- data. The Rodrigues data have been concatenated into a single continuous
5
- document and then cut into sequences of length =line_length, so that the
6
- Rodrigues data and Reach data have the same lengths without need for much
7
- padding or truncating.
2
+ version = 2020.3.19_multitask
3
+ description = Same as 2020.3.13 but with adam rather than rmsprop
8
4
deep_reference_parser_version = b61de984f95be36445287c40af4e65a403637692
9
5
10
6
[data]
@@ -16,13 +12,13 @@ data_path = data/
16
12
respect_line_endings = 0
17
13
respect_doc_endings = 1
18
14
line_limit = 150
19
- policy_train = data/multitask/2020.3.18_multitask_train .tsv
20
- policy_test = data/multitask/2020.3.18_multitask_test .tsv
21
- policy_valid = data/multitask/ 2020.3.18_multitask_valid .tsv
15
+ policy_train = data/multitask/2020.3.19_multitask_train .tsv
16
+ policy_test = data/multitask/2020.3.19_multitask_test .tsv
17
+ policy_valid = datamultitask/ 2020.3.19_multitask_valid .tsv
22
18
s3_slug = https://datalabs-public.s3.eu-west-2.amazonaws.com/deep_reference_parser/
23
19
24
20
[build]
25
- output_path = models/multitask/2020.3.18_multitask /
21
+ output_path = models/multitask/2020.3.19_multitask /
26
22
output = crf
27
23
word_embeddings = embeddings/2020.1.1-wellcome-embeddings-300.txt
28
24
pretrained_embedding = 0
@@ -31,7 +27,7 @@ lstm_hidden = 400
31
27
word_embedding_size = 300
32
28
char_embedding_size = 100
33
29
char_embedding_type = BILSTM
34
- optimizer = adam
30
+ optimizer = rmsprop
35
31
36
32
[train]
37
33
epochs = 60
0 commit comments