@@ -27,7 +27,7 @@ private protected BoostingFastTreeTrainerBase(IHostEnvironment env,
27
27
double learningRate )
28
28
: base ( env , label , featureColumn , weightColumn , groupIdColumn , numLeaves , numTrees , minDatapointsInLeaves )
29
29
{
30
- FastTreeTrainerOptions . LearningRates = learningRate ;
30
+ FastTreeTrainerOptions . LearningRate = learningRate ;
31
31
}
32
32
33
33
private protected override void CheckOptions ( IChannel ch )
@@ -40,10 +40,10 @@ private protected override void CheckOptions(IChannel ch)
40
40
if ( FastTreeTrainerOptions . CompressEnsemble && FastTreeTrainerOptions . WriteLastEnsemble )
41
41
throw ch . Except ( "Ensemble compression cannot be done when forcing to write last ensemble (hl)" ) ;
42
42
43
- if ( FastTreeTrainerOptions . NumLeaves > 2 && FastTreeTrainerOptions . HistogramPoolSize > FastTreeTrainerOptions . NumLeaves - 1 )
43
+ if ( FastTreeTrainerOptions . NumberOfLeaves > 2 && FastTreeTrainerOptions . HistogramPoolSize > FastTreeTrainerOptions . NumberOfLeaves - 1 )
44
44
throw ch . Except ( "Histogram pool size (ps) must be at least 2." ) ;
45
45
46
- if ( FastTreeTrainerOptions . NumLeaves > 2 && FastTreeTrainerOptions . HistogramPoolSize > FastTreeTrainerOptions . NumLeaves - 1 )
46
+ if ( FastTreeTrainerOptions . NumberOfLeaves > 2 && FastTreeTrainerOptions . HistogramPoolSize > FastTreeTrainerOptions . NumberOfLeaves - 1 )
47
47
throw ch . Except ( "Histogram pool size (ps) must be at most numLeaves - 1." ) ;
48
48
49
49
if ( FastTreeTrainerOptions . EnablePruning && ! HasValidSet )
@@ -61,12 +61,12 @@ private protected override void CheckOptions(IChannel ch)
61
61
private protected override TreeLearner ConstructTreeLearner ( IChannel ch )
62
62
{
63
63
return new LeastSquaresRegressionTreeLearner (
64
- TrainSet , FastTreeTrainerOptions . NumLeaves , FastTreeTrainerOptions . MinDocumentsInLeafs , FastTreeTrainerOptions . EntropyCoefficient ,
64
+ TrainSet , FastTreeTrainerOptions . NumberOfLeaves , FastTreeTrainerOptions . MinExampleCountPerLeaf , FastTreeTrainerOptions . EntropyCoefficient ,
65
65
FastTreeTrainerOptions . FeatureFirstUsePenalty , FastTreeTrainerOptions . FeatureReusePenalty , FastTreeTrainerOptions . SoftmaxTemperature ,
66
- FastTreeTrainerOptions . HistogramPoolSize , FastTreeTrainerOptions . RngSeed , FastTreeTrainerOptions . SplitFraction , FastTreeTrainerOptions . FilterZeroLambdas ,
66
+ FastTreeTrainerOptions . HistogramPoolSize , FastTreeTrainerOptions . RandomSeed , FastTreeTrainerOptions . FeatureFractionPerSplit , FastTreeTrainerOptions . FilterZeroLambdas ,
67
67
FastTreeTrainerOptions . AllowEmptyTrees , FastTreeTrainerOptions . GainConfidenceLevel , FastTreeTrainerOptions . MaxCategoricalGroupsPerNode ,
68
68
FastTreeTrainerOptions . MaxCategoricalSplitPoints , BsrMaxTreeOutput ( ) , ParallelTraining ,
69
- FastTreeTrainerOptions . MinDocsPercentageForCategoricalSplit , FastTreeTrainerOptions . Bundling , FastTreeTrainerOptions . MinDocsForCategoricalSplit , FastTreeTrainerOptions . Bias ) ;
69
+ FastTreeTrainerOptions . MinExamplePercentageForCategoricalSplit , FastTreeTrainerOptions . Bundling , FastTreeTrainerOptions . MinExamplesForCategoricalSplit , FastTreeTrainerOptions . Bias ) ;
70
70
}
71
71
72
72
private protected override OptimizationAlgorithm ConstructOptimizationAlgorithm ( IChannel ch )
@@ -94,7 +94,7 @@ private protected override OptimizationAlgorithm ConstructOptimizationAlgorithm(
94
94
optimizationAlgorithm . ObjectiveFunction = ConstructObjFunc ( ch ) ;
95
95
optimizationAlgorithm . Smoothing = FastTreeTrainerOptions . Smoothing ;
96
96
optimizationAlgorithm . DropoutRate = FastTreeTrainerOptions . DropoutRate ;
97
- optimizationAlgorithm . DropoutRng = new Random ( FastTreeTrainerOptions . RngSeed ) ;
97
+ optimizationAlgorithm . DropoutRng = new Random ( FastTreeTrainerOptions . RandomSeed ) ;
98
98
optimizationAlgorithm . PreScoreUpdateEvent += PrintTestGraph ;
99
99
100
100
return optimizationAlgorithm ;
0 commit comments