|
7 | 7 | % Full summary: pmGenerator --transform data/w3.txt -f -n -t . -j 1
|
8 | 8 | % Step counting: pmGenerator --transform data/w3.txt -f -n -t . -p -2 -d
|
9 | 9 | % pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -p -2 -d
|
10 |
| -% Compact (2135 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -s CCCpCCqrCsrtCCCqrCsrt,CCCpCqrsCCqrs,CCCpqrCqr,CCCNpqrCpr,CCNpCCNqrCCCCCCstuCtuvCCvwCxwyCCypCqp,CCNppCqp,CpCCpqCrq,CpCqCrp,CCCNpqCCCCNrsCCtCutvCCvwCrwxCCxyCpy,CCCCCpqrCsrtCqt,CCCpCqrsCrs,CpCNNCqrCsCqr,CCNCCppNqrCqr,CCNNpqCpq,CpCqCrNNp,CCpqCNNpq,CCNpqCNCrpq,CCNpqCNCrCspq,CCCpqCNprCsCNpr,CCpNCNppCqNCNpp,CNCpqCrCsp,CCpCpqCpq,CCpqCNCprq,CCCpqrCNpr,CCpqCCNppq,CpCCpqq,CCpqCCNqpq,CCpCqrCqCpr |
11 |
| -% Concrete (20789800 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -e |
| 10 | +% Compact (2367 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -s CCCpCCqrCsrtCCCqrCsrt,CCCpCqrsCCqrs,CCCCCpqrCqrsCts,CCCpqrCqr,CCCNpqrCpr,CCNpCCNqrCCCCCCstuCtuvCCvwCxwyCCypCqp,CCCCNpqCrqpCsp,CpCCpqCrq,CpCqCrp,CCCCCCpqCrqsNttCut,CCCNpqCCCCNrsCCtCutvCCvwCrwxCCxyCpy,CCCCCpqrCsrtCqt,CCCpCqrsCrs,CCpNCCqCrqpCsNCCqCrqp,CCNCCpCqpNrsCrs,CCCpqCNprCsCNpr,CpCCNCqrrCqr,CCpqCNNpq,CCNNpqCpq,CCNpqCNCrpq,CCNpqCNCrCspq,CCpNCNppCqNCNpp,CNCpqCrCsp,CCpCpqCpq,CCpqCNCprq,CCCpqrCNpr,CCpqCCNppq,CpCCpqq,CCpqCCNqpq,CCpCqrCqCpr |
| 11 | +% Concrete (5271958 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -e |
12 | 12 |
|
13 | 13 | CpCCNqCCNrsCptCCtqCrq = 1
|
14 | 14 | [0] CCNpCCNqrCCsCCNtCCNuvCswCCwtCutxCCxpCqp = D11
|
15 | 15 | [1] CCNpCCNqrCCCNsCCNtuCCvCCNwCCNxyCvzCCzwCxwaCCasCtsbCCbpCqp = D1[0]
|
16 | 16 | [2] CCCpCCNqCCNrsCtuCCuqCrqvCCCNqCCNrsCtuCCuqCrqv = D[0]1
|
17 | 17 | [3] CCCpCCqrCsrtCCCqrCsrt = D[1]1
|
18 | 18 | [4] CCNpCCNqrCCCCsCCtuCvuwCCCtuCvuwxCCxpCqp = D1[3]
|
19 |
| -[5] CCCpCCCqrCsrtuCCCCqrCsrtu = D[4]1 |
20 |
| -[6] CCCNpqCCrCCNsCCNtuCrvCCvsCtsqCCqwCpw = D[3][0] |
21 |
| -[7] CCCNpqCCCNrCCNstCCuCCNvCCNwxCuyCCyvCwvzCCzrCsrqCCqaCpa = D[3][1] |
22 |
| -[8] CCCNpCCNqCCNrsCNptCCtqCrqCCCrqpCqpCCCCCrqpCqpuCvu = D[2][6] |
23 |
| -[9] CCCCCpCCNqCCNrsCtuCCuqCrqvCCCNqCCNrsCtuCCuqCrqvwCxw = D[8][0] |
24 |
| -[10] CCCCCpCCqrCsrtCCCqrCsrtuCvu = D[8][1] |
25 |
| -[11] CCCpCqrsCCqrs = DD1[9]1 |
26 |
| -[12] CCCCCpCCqrCsrtCCCqrCsrtCuCCCqrCsrtCCCuCCCqrCsrtvCwv = D[3]D[3][4] |
27 |
| -[13] CCCCCNpqCCrCCNsCCNtuCrvCCvsCtsqCCqwCpwCxCCqwCpwCCCxCCqwCpwyCzy = D[3]D[3]D1[6] |
28 |
| -[14] CCCCCpqrCqrsCts = DD[11][0]1 |
29 |
| -[15] CCCCCCpqCrqsCtsuCqu = DD[11]DD[3]111 |
30 |
| -[16] CCpqCrCpq = D[11][9] |
31 |
| -[17] CCCpqrCqr = DDD[14]D[3][2]1[0] |
32 |
| -[18] CCCNpqrCpr = D[0]D[10][11] |
33 |
| -[19] CCNpCCNqrCCCCCCstuCtuvCCvwCxwyCCypCqp = D1D[5]D[3]DD[14]11 |
34 |
| -[20] CCNppCqp = D[0]D[18][0] |
| 19 | +[5] CCCpCCCNqCCNrsCtuCCuqCrqvwCCCCNqCCNrsCtuCCuqCrqvw = DD1[2]1 |
| 20 | +[6] CCCpCCCqrCsrtuCCCCqrCsrtu = D[4]1 |
| 21 | +[7] CCCNpqCCrCCNsCCNtuCrvCCvsCtsqCCqwCpw = D[3][0] |
| 22 | +[8] CCCNpqCCCNrCCNstCCuCCNvCCNwxCuyCCyvCwvzCCzrCsrqCCqaCpa = D[3][1] |
| 23 | +[9] CCCNpCCNqCCNrsCNptCCtqCrqCCCrqpCqpCCCCCrqpCqpuCvu = D[2][7] |
| 24 | +[10] CCCCCpCCNqCCNrsCtuCCuqCrqvCCCNqCCNrsCtuCCuqCrqvwCxw = D[9][0] |
| 25 | +[11] CCCCNpCCNqrCCsCCNtCCNuvCswCCwtCutxCCxpCqpyCCyzCaz = D[5][8] |
| 26 | +[12] CCCCCpCCqrCsrtCCCqrCsrtuCvu = D[9][1] |
| 27 | +[13] CCCpCqrsCCqrs = DD1[10]1 |
| 28 | +[14] CCCCCpCCqrCsrtCCCqrCsrtCuCCCqrCsrtCCCuCCCqrCsrtvCwv = D[3]D[3][4] |
| 29 | +[15] CCCCCNpqCCrCCNsCCNtuCrvCCvsCtsqCCqwCpwCxCCqwCpwCCCxCCqwCpwyCzy = D[3]D[3]D1[7] |
| 30 | +[16] CCCCCpqrCqrsCts = DD[13][0]1 |
| 31 | +[17] CCCCCCpqCrqsCtsuCqu = DD[13]DD[3]111 |
| 32 | +[18] CCCNpqCCCCrstCstqCCquCpu = D[3]DD[16]11 |
| 33 | +[19] CCpqCrCpq = D[13][10] |
| 34 | +[20] CCpqCCCpqrCsr = D[13][11] |
| 35 | +[21] CCCpqrCqr = DDD[16]D[3][2]1[0] |
| 36 | +[22] CCCNpqrCpr = D[0]D[12][13] |
| 37 | +[23] CCNpCCNqrCCCCCCstuCtuvCCvwCxwyCCypCqp = D1D[6][18] |
| 38 | +[24] CCNppCqp = D[0]D[22][0] |
| 39 | +[25] CpCqCrq = DD[16][16]1 |
| 40 | +[26] CCNpCCNqrCCsCtCutvCCvpCqp = D1[25] |
35 | 41 |
|
36 | 42 | % Axiom 1 by Frege (CpCqp), i.e. 0→(1→0) ; 67 steps
|
37 |
| -[21] CpCqp = DDD[14][14]11 |
| 43 | +[27] CpCqp = D[25]1 |
38 | 44 |
|
39 |
| -[22] CCNpCCNqrCCsCtsuCCupCqp = D1[21] |
40 |
| -[23] CCCCNpqCrqpCsp = D[0]D[15]DD[3][7][3] |
41 |
| -[24] CpCCpqCrq = DD[1]DDD[3]D[3]D1[7][3][11][0] |
42 |
| -[25] CCNpCCNqrCCCCNstCCuCvuwCCwxCsxyCCypCqp = D1D[11][22] |
43 |
| -[26] CpCqCrp = D[17][16] |
44 |
| -[27] CCCNpqCCCCNrsCCtCutvCCvwCrwxCCxyCpy = D[11][25] |
45 |
| -[28] CCCCCpqrCsrtCqt = DD[11]DD[3]D[11]1[20]1 |
| 45 | +[28] CCNpCCNqrCCsCtsuCCupCqp = D1[27] |
| 46 | +[29] CCCCNpqCrqpCsp = D[0]D[17]DD[3][8][3] |
| 47 | +[30] CCCNpqCCrCsCtsqCCquCpu = D[3][26] |
| 48 | +[31] CpCCpqCrq = DD[1]DDD[3]D[3]D1[8][3][13][0] |
| 49 | +[32] CpCqCrp = D[21][19] |
| 50 | +[33] CCCCCCpqCrqsNttCut = D[0]D[21]DDD1[6]1D[6][10] |
| 51 | +[34] CCCNpqCCCCNrsCCtCutvCCvwCrwxCCxyCpy = D[13]D1D[13][28] |
| 52 | +[35] CCCCCpqrCsrtCqt = DD[13]DD[3]D[13]1[24]1 |
46 | 53 |
|
47 | 54 | % Axiom 3 by Łukasiewicz (CpCNpq), i.e. 0→(¬0→1) ; 127 steps
|
48 |
| -[29] CpCNpq = D[18]D[6][20] |
| 55 | +[36] CpCNpq = D[22]D[7][24] |
49 | 56 |
|
50 |
| -[30] CCCpCqrsCrs = DD1[20]DD[13][5][11] |
| 57 | +[37] CCCpCqrsCrs = DD1[24]DD[15][6][13] |
51 | 58 |
|
52 | 59 | % Identity principle (Cpp), i.e. 0→0 ; 135 steps
|
53 |
| -[31] Cpp = DD[18]D[0][24]1 |
| 60 | +[38] Cpp = DD[22]D[0][31]1 |
54 | 61 |
|
55 |
| -[32] CCNpCCNqrCCsstCCtpCqp = D1[31] |
56 |
| -[33] CpCNNCqrCsCqr = D[23]DD[11]D[3][25]D[23]D[1]DD[0]D[10]D[0]DD[12]DD1[2]1[11]DD[0]DDD[3]D[3]D1D[5][3][11][11][10] |
57 |
| -[34] CCNCCppNqrCqr = D[27]D[32]D[33][33] |
58 |
| -[35] CCCppNqCqr = D[18][34] |
59 |
| -[36] CCNNpqCpq = D[27]D[19]D[17]DD[27]D[19]D[34][26][26] |
60 |
| -[37] CpCqCrNNp = D[36][26] |
61 |
| -[38] CpCqCrNNCNps = D[18][37] |
62 |
| -[39] CCpqCNNpq = D[27]D[19][37] |
63 |
| -[40] CCpqCNCNNprq = D[27]D[19][38] |
64 |
| -[41] CpCNNCNqqq = D[20]D[40][20] |
65 |
| -[42] CCNpqCNCrpq = D[27]D[19]D[39]D[17][37] |
66 |
| -[43] CCNpqCNCNprq = D[27]D[19]D[39][38] |
67 |
| -[44] CCNpqCNCrCspq = D[27]D[19]D[39]D[30][37] |
68 |
| -[45] CCNpCqpCrCqp = D[19]D[42][26] |
69 |
| -[46] CpCCNCqrrCqr = D[45][24] |
70 |
| -[47] CCpqCCCrrpq = D[32][46] |
71 |
| -[48] CCCpqCNprCsCNpr = D[19]D[43]D[28]D[24][35] |
| 62 | +[39] CCNpCCNqrCCsstCCtpCqp = D1[38] |
| 63 | +[40] CCpNCCqCrqpCsNCCqCrqp = D[28]DD[29]DD[6]D[3]D1[13]D[29]D[1]DD[0]D[12]D[0]DD[14][5][13]DD[0]DDD[3]D[3]D1D[6][3][13][13][12]1 |
| 64 | +[41] CCNCCpCqpNrsCrs = D[18][40] |
| 65 | +[42] CpCqCrNCCsCtsNp = D[41][32] |
| 66 | +[43] CCCpqCNprCsCNpr = D[23]D[35]D[20]D[22]DD[13][26]D[22][40] |
| 67 | +[44] CpCCNCqrrCqr = DD[39]D[21]DDD[13]D1DDD[16]D[3]D[3]D1[11]1[0]1DD[3][11][41][29] |
| 68 | +[45] CCpqCCCrrpq = D[39][44] |
| 69 | +[46] CCpqCNNpq = DD[33]DD[30]D[39]D[22]D[13][42][31]1 |
| 70 | +[47] CCNNpqCpq = D[34]D[23]D[35]D[20]DD[22]D[39]D[41][31]1 |
| 71 | +[48] CpCqCrNNp = D[47][32] |
| 72 | +[49] CpCqCrNNCNps = D[22][48] |
72 | 73 |
|
73 |
| -% Axiom 2 by Łukasiewicz (CCNppp), i.e. (¬0→0)→0 ; 6541 steps |
74 |
| -[49] CCNppp = D[36]D[41][41] |
| 74 | +% Axiom 2 by Łukasiewicz (CCNppp), i.e. (¬0→0)→0 ; 2225 steps |
| 75 | +[50] CCNppp = D[47]DD[33]DD[30]D[39]D[22][42][24]1 |
75 | 76 |
|
76 |
| -[50] CpCNCqrCNqs = D[48][48] |
77 |
| -[51] CCpNCNppCqNCNpp = D[19]D[39]D[28]D[24]D[47][49] |
78 |
| -[52] CNCpqCrCsp = DDD[47][36]DD[19]D[43][26]D[39][45]D[44]DD[48]DD[0]DD[12][5][11][10]D[50][50] |
79 |
| -[53] CCpCpqCrCpq = D[19][52] |
80 |
| -[54] CpCCqCqrCqr = D[53][53] |
81 |
| -[55] CCpCpqCpq = D[54][54] |
82 |
| -[56] CCpqCNCprq = D[27]D[19]DD[55][48]D[36]D[17]D[11][16] |
83 |
| -[57] CCCpqrCNpr = D[27]D[19]D[56][37] |
84 |
| -[58] CCpqCCNppq = DD[11]D1[1]D[19]DD[27]DD[27]D[19]D[39]DD[27][51][26]D[57][51][26] |
85 |
| -[59] CCNCpqrCCrqCpq = DD[58][30]D[44]1 |
86 |
| -[60] CCpCqCprCqCpr = D[55]D[19]D[42][52] |
87 |
| -[61] CpCCpqq = DD[60]D[15][13]DD[22][46][55] |
88 |
| -[62] CCpqCCNqpq = D[19]DDD[11][19]D[58]D[28][55][58] |
| 77 | +[51] CCNpqCNCrpq = D[34]D[23]D[46]D[21][48] |
| 78 | +[52] CCNpqCNCrCspq = D[34]D[23]D[46]D[37][48] |
| 79 | +[53] CCpNCNppCqNCNpp = D[23]D[46]D[35]D[31]D[45][50] |
| 80 | +[54] CNCpqCrCsp = DDD[45][47]DD[23]DD[34]D[23]D[46][49][32]D[46]D[23]D[51][32]D[52]DD[43]DD[0]DD[14][6][13][12]1 |
| 81 | +[55] CCpCpqCrCpq = D[23][54] |
| 82 | +[56] CpCCqCqrCqr = D[55][55] |
| 83 | +[57] CCpCpqCpq = D[56][56] |
| 84 | +[58] CCpqCNCprq = D[34]D[23]DD[57][43]D[47]D[21]D[13][19] |
| 85 | +[59] CCCpqrCNpr = D[34]D[23]D[58][48] |
| 86 | +[60] CCpqCCNppq = DD[13]D1[1]D[23]DD[34]DD[34]D[23]D[46]DD[34][53][32]D[59][53][32] |
| 87 | +[61] CCpCqCprCqCpr = D[57]D[23]D[51][54] |
| 88 | +[62] CCNCpqrCCrqCpq = DD[60][37]D[52]1 |
| 89 | +[63] CpCCpqq = DD[61]D[17][15]DD[28][44][57] |
| 90 | +[64] CCpqCCNqpq = D[23]DDD[13][23]D[60]D[35][57][60] |
89 | 91 |
|
90 |
| -% Axiom 3 for Frege by Łukasiewicz (CCNpNqCqp), i.e. (¬0→¬1)→(1→0) ; 1193987 steps |
91 |
| -[63] CCNpNqCqp = D[36]D[60]DD[62]D[17][35]D[42]D[55]D[40][44] |
| 92 | +% Axiom 1 by Łukasiewicz (CCpqCCqrCpr), i.e. (0→1)→((1→2)→(0→2)) ; 303787 steps |
| 93 | +[65] CCpqCCqrCpr = DDD1[58]D[27]D[60][63][62] |
92 | 94 |
|
93 |
| -% Axiom 1 by Łukasiewicz (CCpqCCqrCpr), i.e. (0→1)→((1→2)→(0→2)) ; 1196969 steps |
94 |
| -[64] CCpqCCqrCpr = DDD1[56]D[21]D[58][61][59] |
| 95 | +% Axiom 3 for Frege by Łukasiewicz (CCNpNqCqp), i.e. (¬0→¬1)→(1→0) ; 306275 steps |
| 96 | +[66] CCNpNqCqp = D[47]D[61]DD[64]D[21]D[22][41]D[51]D[57]DD[34]D[23][49][52] |
95 | 97 |
|
96 |
| -[65] CCCCpqCrqsCCrps = D[64][64] |
97 |
| -[66] CCpCqrCqCpr = D[65]D[64][61] |
| 98 | +[67] CCCCpqCrqsCCrps = D[65][65] |
| 99 | +[68] CCpCqrCqCpr = D[67]D[65][63] |
98 | 100 |
|
99 |
| -% Axiom 2 by Frege (CCpCqrCCpqCpr), i.e. (0→(1→2))→((0→1)→(0→2)) ; 18391835 steps |
100 |
| -[67] CCpCqrCCpqCpr = D[66]D[65]D[59]DD[66]D[57][62]D[66]D[65][57] |
| 101 | +% Axiom 2 by Frege (CCpCqrCCpqCpr), i.e. (0→(1→2))→((0→1)→(0→2)) ; 4659203 steps |
| 102 | +[69] CCpCqrCCpqCpr = D[68]D[67]D[62]DD[68]D[59][64]D[68]D[67][59] |
0 commit comments